PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Numerical analysis of the mandibular reconstruction with the use of autogenous bone graft and dental implants

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza numeryczna rekonstrukcji żuchwy przeszczepem autogennym z wprowadzonymi implantami stomatologicznymi
Języki publikacji
EN
Abstrakty
EN
The article refers to some issues of the mandible reconstruction in the region of chin with the method involving dental implants introduced for teeth restoration. 12 models are created, which take into account three different graft materials (iliac crest, fibula and rib) and two various implant lengths (13 and 18 mm). The authors try to answer the question how the parameters of the introduced implants affect the distribution of the strain intensity in the mandible, both in the implantation area and at its border with autogenous graft. Also, the distribution of equivalent stress in the reconstruction plate and dental implants is analyzed.
PL
Praca dotyczy problematyki rekonstrukcji żuchwy w rejonie bródki z wykorzystaniem metody polegającej na wprowadzeniu implantów stomatologicznych pod odbudowę uzębienia. W artykule stworzono 12 modeli uwzględniających zastosowanie trzech różnych materiałów na przeszczep (kości biodrowej, strzałkowej i żebra) oraz dwie różne długości umieszczonych implantów (13 i 18 mm). Autorzy podjęli próbę odpowiedzi na pytanie, w jaki sposób parametry wprowadzonych implantów wpływają na rozkład intensywności odkształcenia w kości żuchwy w obszarze implantacji oraz na granicy z przeszczepem autogennym. Analizie poddano również rozkład naprężenia zredukowanego w płycie rekonstrukcyjnej oraz implantach stomatologicznych.
Rocznik
Strony
75--85
Opis fizyczny
Bibliogr. 35 poz., tab., il., wykr.
Twórcy
autor
  • Institute of Applied Mechanics, Faculty of Mechanical Engineering, Cracow University of Technology
  • Institute of Applied Mechanics, Faculty of Mechanical Engineering, Cracow University of Technology
autor
  • Institute of Applied Mechanics, Faculty of Mechanical Engineering, Cracow University of Technology
  • Medical University of Silesia
Bibliografia
  • [1] Baggi L., Cappelloni I., Maceri F., Vairo G., Stress-based performance evaluation of osseointegrated dental implants by finite-element simulation, Simulation Modelling Practice and Theory 16, 2008, 971–987.
  • [2] Barao V.A.R., Delben J.A., Lima J., Cabral T., Assuncao W.G., Comparison of different designs of implant-retained overdentures and fixed full-arch implant-supported prosthesis on stress distribution in edentulous mandible – A computed tomographybased three-dimensional finite element analysis, Journal of Biomechanics 46, 2013, 1312–1320.
  • [3] Bonnet A.S., Postaire M., Lipinski P., Biomechanical study of mandible bone supporting a four-implant retained bridge. Finite element analysis of the influence of bone anisotropy and foodstuff position, Medical Engineering & Physics 31, 2009, 806–815.
  • [4] Chladek W., Czerwnik I., Kosiewicz J., Własności mechaniczne krążka stawowego stawu skroniowo-żuchwowego, AnnalAcadMedSilesiensis , supl.46, Katowice 2002, str. 188–193.
  • [5] Correa S., Ivancik J., Isaza J.F., Naranjo M., Evaluation of the structural behavior of three and four implant-supported fixed prosthetic restorations by finite element analysis, Journal of Prosthodontic Research 56, 2012, 110–119.
  • [6] Curtis D.A., Plesh O., Miller A.J., Curtis T.A., Sharma A., Schweitser R., Hilsinger R.L., Shour L., Singer M., A comparison of masticatory function in patients with or without reconstruction of the mandible, Head&Neck 1997, 7, 287–296.
  • [7] Daas M., Dubois G., Bonnet A.S., Lipinski P., Rignon-Bret C., A complete finite element model of a mandibular implant-retained overdenture with two implants: Comparison between rigid and resilient attachment configurations, Medical Engineering & Physics 30, 2008, 218–225.
  • [8] Dąbrowski J., Przybysz J., Piętka T., Domański W., Tytanowe płyty rekonstrukcyjne w odtwarzaniu ciągłości żuchwy, Czasopismo Stomatologiczne, 2010, 63, 663–671.
  • [9] Drozdzowska B., Michno M., Michno A., Związek masy kostnej żuchwy ze stanem mineralizacji szkieletu na podstawie piśmiennictwa, Nowa Stomatologia, zeszyt 21 (3/2002).
  • [10] Ferreira M.B., et al. Non-linear 3D finite element analysis of full-arch implantsupported fixed dentures, Materials Science and Engineering C 38, 2014, 306–314.
  • [11] Hilger P.A., Adams G., Mandibular Reconstruction with the A-O Plate, Arch Otolaryngology, 111, 1985, 469–471.
  • [12] Jędrusik-Pawłowska M., Kromka-Szydek M., Mandibular reconstruction – biomechanical strength analysis (FEM) based on a retrospective clinical analysis of selected patients, Acta of Bioengineering and Biomechanics, Vol. 15, No. 2, 2013, 23–31.
  • [13] Koeck B., Wagner W., Implantologia, Wyd. Medyczne Urban & Partner, Wrocław 2004.
  • [14] Kong L., Zhao Y., Selection of the implant thread pitch for optimal biomechanical properties: A three-dimensional finite element analysis, Advances in Engin. Software 40, 2009, 474–478.
  • [15] Kowalczyk R., Kowalik S., Rekonstrukcja żuchwy w materiale Kliniki Chirurgii Szczękowo-Twarzowej PAM w Szczecinie, Czasopismo Stomatologiczne, 2002, LV, 3.
  • [16] Kromka M., Analiza wytrzymałościowa osteosyntezy mini- i makropłytkowej urazów żuchwy, Rozprawa doktorska, Kraków, 2005, 169–176.
  • [17] Kromka-Szydek M., Jędrusik-Pawłowska M., Milewski G., Lekston Z., Cieślik T., Drugacz J., Numerical analysis of displacements of mandible bone parts using various elements for fixation of subcondylar fractures, Acta of Bioeng. and Biomechanics, Vol. 12, No. 1, 2010, 11–18.
  • [18] Lin D., Li Q., Li W., Duckmanton N., Swain M., Mandibular bone remodeling induced by dental implant, Journal of Biomechanics 43, 2010, 287–293.
  • [19] Liu J. et al., Influence of implant number on the biomechanical behavior of mandibular implant-retained/supported overdentures: A three-dimensional finite element analysis, Journal of Dentistry 41, 2013, 241–249.
  • [20] Maciejewski A., Szymczyk C., Wierzgoń J., Półtorak S., Techniki mikrochirurgiczne w rekonstrukcji poresekcyjnych ubytków żuchwy – propozycja algorytmu, Czasopismo Stomatologiczne, LVIII, 7, 2005, 505–513.
  • [21] Marunick M.T. et al., Functional criteria for mandibular implant placement post resection and reconstruction for cancer, J. Prosthet. Dent., 1999, 82, 107–113.
  • [22] Merdji A., Bouiadjra B.B., Achour T., Serier B., Ould Chick B., Feng Z.O., Stress analysis in dental prosthesis, Computational Materials Science 49, 2010, 126–133.
  • [23] Meric G., Erkmen E., Kurt A., Tunc Y., Eser A., Influence of prosthesis type and material on the stress distribution in bone around implants: A 3-dimensional finite element analysis, Journal of Dental Sciences 6, 2011, 25–32.
  • [24] Mierzwińska-Nastalska E., Rolski D., Gładkowski J., Łomżyński Ł., Kostrzewa-Janicka J., Mateńsko D., Ciechowicz K., Starościak S., Jaworowski J. Rehabilitacja implantoprotetyczna pacjentów po resekcji żuchwy i rekonstrukcji z zastosowaniem unaczynionych płatów z kości strzałki, Protetyka Stomatologiczna, LX, 3, 2010, 182–193.
  • [25] Milewski G., Kromka-Szydek M., Podstawy biomechaniki stomatologicznej, Politechnika Krakowska, Kraków 2010.
  • [26] Milewski G., Tracz M., Numerical strength simulation of mandibular osteosynthesis by means of autogenous bone graft, Acta of Bioengineering and Biomechanics, Vol. 2, No. 2, 2000, 59–65.
  • [27] Nagasao T., Miyamoto J., Tamaki T., Kawana H., A comparison of stresses in implantation for grafted and plate-andscrew mandible reconstruction, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., Vol. 109(3), 2010, 346–356.
  • [28] Płomiński J., Kwiatkowski K., Przeszczepy kostne. Pol. Merk. Lek., 2006, XXI (126), 507–510.
  • [29] Santiago J.F., Pellizzer E.P., Verri F.R., de Carvalho P.S., Stress analysis in bone tissue around single implants with different diameters and veneering materials: A 3-D finite element study, Materials Science and Engineering C 33, 2013, 4700–4714.
  • [30] Schwitalla A.D. et al., Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone, Journal of Biomechanics 48, 2015, 1–7.
  • [31] Simsek B., Erkmen E., Yilmaz D., Eser A., Effects of different inter-implant distances on the stress distribution around endosseous implants in posterior mandible: A 3D finite element analysis, Medical Engineering & Physics 28, 2006, 199–213.
  • [32] Takahashi T., Shimamura I., Sakuraiu K., Influence of number and inclination angle of implants on stress distribution in mandibular cortical bone with All-on-4 Concept, Journal of Prosthodontic Research 54, 2010, 179–184.
  • [33] Topkaya T., Solmaz M.Y., The effect of implant number and position on the stress behavior of mandibular implant retained overdentures: A three-dimensional finite element analysis, Journal of Biomechanics 48, 2015, 2102–2109.
  • [34] Wang C., Fu G., Deng F., Difference of natural teeth and implant-supported restoration: A comparison of bone remodeling simulations, Journal of Dental Sciences 10, 2015, 190–200.
  • [35] Yang Y., Xiang H.-J., A three-dimensional finite element study on the biomechanical behavior of an FGBM dental implant in surrounding bone, J Biomech 40, 2007, 2377–2385.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a48d967-037e-4d27-80e9-91970b8cdb55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.