PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie danych syntetycznych do badania wpływu zmian klimatu na zasoby wodne zlewni

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Application of synthetic data for assessment of climate change impact on water resources of basin
Języki publikacji
PL
Abstrakty
PL
Modele hydrologiczne opad-odpływ czy rolnicze opad-plon wymagają na wejściu określony zbiór danych meteorologicznych. Problem braku takich danych bądź ich niekompletność mogą zostać rozwiązane przez uzyskanie danych syntetycznych. Jest to konieczne w badaniach nad wpływem zmian klimatu, gdzie do badań wykorzystuje się dane wygenerowane za pomocą modeli symulujących potencjalne wartości wybranych zmiennych meteorologicznych. W pracy przedstawiono proces przygotowania syntetycznych danych do modelu opad-odpływ dla aktualnych warunków klimatycznych oraz spełniających założenia scenariuszy zmiany klimatu. Przeprowadzono weryfikację uzyskanych danych generowanych. Dane zostały wykorzystane do przeprowadzenie oceny wpływ zmian klimatycznych na 2080 rok według scenariusza emisyjnego A1B oraz modelu cyrkulacyjnego HadCM3.
EN
Hydrological rainfall-runoff models and agricultural rainfall-yield need at input a specific set of meteorological data. The problem of the absence of such data or their incompleteness can be solved by synthetic data. This is necessary in studies on the effects of climate change, where the research uses data from weather generator that simulate the possible values of selected meteorological variables. The paper presents the process of preparing synthetic data for rainfall-runoff model for current climatic conditions and satisfying the assumptions of climate change scenarios. A verification of the generated data was also presented. The obtain data were used to assess the impact of climate change on the year 2080 according to the emission scenario A1B and circulation model HadCM3.
Rocznik
Strony
332--346
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
autor
  • Uniwersytet Przyrodniczy we Wrocławiu, Katedra Matematyki, ul. C.K. Norwida 25/27, 50-375 Wrocław, Poland
autor
  • Uniwersytet Przyrodniczy we Wrocławiu, Katedra Matematyki, ul. C.K. Norwida 25/27, 50-375 Wrocław, Poland
autor
  • Instytut Meteorologii i Gospodarki Wodnej Oddział we Wrocławiu, ul. Parkowa 30, 51-616 Wrocław, Poland
  • Instytut Meteorologii i Gospodarki Wodnej Oddział we Wrocławiu, ul. Parkowa 30, 51-616 Wrocław, Poland
Bibliografia
  • Angström, A. (1924). Solar and terrestrial radiation. Quart. J. Roy. Met. Soc., 50, 121-125.
  • Bac, S., Iwański, S. i Kuchar, L. (2008). Porównanie wybranych modeli do szacowania parowania potencjalnego w okresie zimowym dla potrzeb modelowania hydrologicznego. Acta Agrophysica, 12(2), 305-314.
  • Bac, S. i Rojek, M. (1999). Promieniowanie i bilans cieplny. W S. Bac i M. Rojek (red.), Meteorologia i klimatologia w inżynierii środowiska. Wrocław: Wyd. AR Wroc.
  • Bac, S. i Kuchar, L. (2001). Modyfikacja wzoru Turca dla rejonu Wrocławia. Zesz. Nauk. AR we Wrocławiu, Ser. Inż. Środ., XII (413), 263-270.
  • Barrow, E., Hulme, M. i Semenov, M. (1996). Effect of using different methods in the construction of climate change scenarios: Examples from Europe. Clim. Research, 7, 195-211.
  • Beersma, J.J. i Buishand, T.A. (2003). Multisite simulation of daily precipitation and temperature conditional on the atmospheric circulation. Clim. Res, 25, 121-133.
  • Boé, J., Terray, L., Habets, F. i Martin, E. (2006). A simple statistical-dynamical downscaling scheme based on weather types and conditional resampling. J. Geophys. Res., 111, D23106, doi:10.1029/2005JD006889.
  • Boé, J., Terray, L., Habets, F. i Martin, E. (2007). Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol., 27 (12), 1643-1655.
  • Buishand, T.A. i Brandsma, T. (1997). Comparison of circulation classification schemes for predicting temperature and precipitation in the Netherlands. Int. J. Climatol., 17, 875-889.
  • Buishand, T.A. i Brandsma, T. (2001). Multisite simulation of daily precipitation and temperature in the Rhine basin by nearest-neighbor resampling. Water Resour. Res., 37, 2761-2776.
  • Burn, D.H. (1994). Hydrological effects of climatic change in west-central Canada. J. Hydrol., 160, 53-70.
  • Burton, A., Kilsby, C.G., Fowler, H.J., Cowpertwait, P.S.P. i O’Connell, P.E. (2008). RainSim: a spatial-temporal stochastic rainfall modelling system. Environmental Modelling and Software, 23, 1356-1369.
  • Chen, H., Guo, S.L., Xu, C.Y. i Singh, V.P. (2007). Historical temporal trends of hydroclimatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin. J. Hydrol., 344, 171-184.
  • Chen, H., Xu, C.Y. i Guo, S. (2012). Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. J. Hydrol, 434-435, 36-45.
  • Covey, C., Achutarao, K.M., Cubasch, U., Jones, P.D., Lambert, S.J., Mann, M.E., Phillips, T.J. i Taylor, K.E. (2003). An overview of results from the Coupled Model Intercomparison Project (CMIP). Global and Planetary Change, 37, 103-133.
  • Fowler, H.J., Kilsby, C.G., O’Connel, P.E. i Burton, A. (2005). A weather-type conditioned multi-site stochastic rainfall model for the generation of climatic variability and change. J. Hydrol. 38, 50-66.
  • Fowler, H.J., Blenkinsop, S. i Tebaldi, C. (2007). Review linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, 27, 1547-1578.
  • Gates, W.L. (1985). The use of general circulation models in the analysis of the ecosystem impacts of climatic change. Clim. Change, 7, 267-284.
  • Gleick, P.H. (1987). The development and testing of a water-balance model for climate impact assessment – modeling the Sacramento basin. Water Resour. Res., 23 (6), 1049-1061.
  • Gleick, P.H. (1989). Climate change, hydrology, and water resources. Rev. Geophys., 27, 329-344.
  • Guo, S.L., Wang, J.X., Xiong, L.H., Ying, A.W. i Li, D.F. (2002). A macro-scale and semidistributed monthly water balance model to predict climate change impacts in China. J. Hydrol., 268 (1-4), 1-15.
  • Hayhoe, H.N. (2000). Improvements of stochastic weather data generators for diverse climates. Climate Res., 14, 75-87.
  • Hellström, C., Chen, D., Achberger, C. i Raisanen, J. (2001). Comparison of climate change scenarios for Sweden based on statistical and dynamical downscaling of monthly precipitation. Clim. Res., 19, 45-55.
  • Hessami, M., Gachon, P., Ouarda, T.B.M.J. i St-Hilaire, A. (2008). Automated regression-based statistical downscaling tool. Environ. Model Softw., 23, 813-834.
  • Huth, R. (2004). Sensitivity of local daily temperature change estimates to the selection of downscaling models and predictors. J. Clim., 17 (3), 640-652.
  • Iwański, S. i Kuchar, L. (2003). Generowanie przestrzennych dobowych danych meteorologicznych. Acta Scientiarum Polonorum, Formatio Circumiectus, 2 (1), 113-121.
  • Jones, R.N., Chiew, F.H.S., Boughton, W.C. i Zhang, L. (2006). Estimating the sensitivity of mean annual runoff to climate change using selected hydrological models. Advances in Water Resources, 29, 1419-1429.
  • Katz, R.W. (1996). Use of conditional stochastic models to generate climate change scenarios. Clim. Change, 35, 397-414.
  • Kidson, J.W. i Thompson, C.S. (1998). A comparison of statistical and model-based downscaling techniques for estimating local climate variations. J. Climate, 11, 735-753.
  • Kilsby, C.G., Jones, P.D., Burton, A., Ford, A.C., Fowler, H.J., Harpham, C., James, P., Smith, A. i Wilby, R.L. (2007). A daily weather generator for use in climate change studies. Environmental Modelling and Software, 22, 1705-1719.
  • Kuchar, L. (2004). Using WGENK to generate synthetic daily weather data for modelling of agricultural processes. Math. Comput. Symul, 65, 69-75.
  • Kuchar, L. (2011). Weather Generation with a New Approach to Rainfall Variance Estimation and Seasonal Correlation of Variables for Crop Production Modelling. Agrophysics, 1 (4), 40-46.
  • Kuchar, L. i Bac, S. (2006). Szacowanie parowania potencjalnego w okresie zimowym za pomocą zmodyfikowanego wzoru Turca dla potrzeb modelowania hydrologicznego. W Aktualne problemy rolnictwa, gospodarki żywnościowej i ochrony środowiska. Wrocław: Wyd. AR Wroc., 205-214.
  • Kuchar, L., Iwanski, S., Jelonek L. i Szalinska, W. (2014a). Application of Spatial Weather Generator for the Assessment of Climate Change Impacts on a River Runoff. Geografie, 119(1), 1-25.
  • Kuchar, L., Iwanski, S., Jelonek, L. i Szalinska, W. (2014b). A modeling framework to assess the impact of climate change on a river runoff, Meteorology Hydrology and Water Management, 2(2), in print.
  • Landman, W.A., Mason, S.J., Tyson, P.D. i Tennant, W.J. (2001). Statistical downscaling of GCM simulations to streamflow. J. Hydrol., 252, 221-236.
  • Le Treut, H., Somerville, R., Cubasch, U., Ding, Y., Mauritzen, C., Mokssit, A., Peterson, T. i Prather, M. (2007). Historical Overview of Climate Change. W Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. i Miller, H.L. (red.). Cambridge: Cambridge University Press.
  • Mearns, L.O., Rosezweig, C. i Goldberd, R. (1997). Mean and variance change in climatic scenarios. Methods agricultural applications and measures of uncertainty. Clim. Change, 35, 367-396.
  • Menzel, L. i Burger, G. (2002). Climate change scenarios and runoff response in the Mulde catchment (Southern Elbe, Germany). Journal of Hydrology, 267, 53-64.
  • Merritt, W.S., Alila, Y., Barton, M., Taylor, B., Cohen, S. i Neilsen, D. (2006). Hydrologic response to scenarios change in sub watersheds of the Okanagan basin, British Columbia. J. Hydrol., 326, 79-108.
  • Minville, M., Brissette, F. i Leconte, R. (2008). Uncertainty of the impact of climate change on the hydrology of a nordic watershed. J. Hydrol., 358, 70-83.
  • Parlange, M.B. i Katz, R.W. (2000). An extended version of the Richardson model for simulating daily weather variables. J. Appl. Meteorol, 39, 610-622.
  • Rajagopalan, B. i Lall, U. (1999). A k-nearest-neighbor simulator for daily precipitation and other weather variables. Water Resour. Res., 35, 3089-3101.
  • Randall, D.A., Wood, R.A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., Stouffer, R.J., Sumi, A. i Taylor, K.E. (2007). Cilmate Models and Their Evaluation. W Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. i Miller, H.L. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Richardson, C.W. (1981). Stochastic simulation of daily precipitation, temperature and solar radiation. Water Resour. Res., 17 (1), 182-190.
  • Schoof, J.T., Pryor, S.C. i Robeson, S.M. (2007). Downscaling daily maximum and minimum temperatures in the Midwestern USA: a hybrid empirical approach. Int. J. Climatol., 27, 439-454.
  • Scinocca, J. F., McFarlane, N. A., Lazare, M., Li, J. i Plummer D. (2008). The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. and Phys., 8, 7055-7074.
  • Semenov M.A., Brooks, R.J., Barrow, E.M. i Richardson C.W. (1998). Comparison of WGEN and LARS-WG stochastic weather generators for diverse climate. Clim. Res., 10, 95-107.
  • Semenov, M.A. i Stratonovitch, P. (2010). Use of multi-model ensembles from global climate models for assessment of climate change impacts. Clim. Res., 41, 1-14.
  • Solomon, S., Qin, D., Manning, M., Alley, R.B., Berntsen, T., Bindoff, N.L., Chen, Z., Chidthaisong, A., Gregory, J.M., Hegerl, G.C., Heimann, M., Hewitson, B., Hoskins, B.J., Joos, F., Jouzel, J., Kattsov, V., Lohmann, U., Matsuno, T., Molina, M., Nicholls, N., Overpeck, J., Raga, G., Ramaswamy, V., Ren, J., Rusticucci, M., Somerville, R., Stocker, T.F., Whetton, P., Wood, R.A. i Wratt, D. (2007). Technical Summary. W Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. i Miller, H.L. (red.). Cambridge: Cambridge University Press.
  • Wilby, R.L. (1994). Stochastic weather type simulation for regional climate change impact. Water Resources Research, 30, 3395-3403.
  • Wilby, R.L., Hassan, H. i Hanaki, K. (1998). Statistical downscaling of hydrometeorological variables using general circulation model output. J. Hydrol., 205, 1-19.
  • Wilby, R.L., Conway, D. i Jones, P.D. (2002a). Prospects for downscaling seasonal precipitation variability using conditioned weather generator parameters. Hydrol. Process, 16, 1215-1234.
  • Wilby, R.L., Dawson, C.W. i Barrow, E.M. (2002b). SDSM-a decision support tool for the assessment of regional climate change impacts. Environ. Model Softw., 17, 147-159.
  • Wilks, D.S. (1992). Adapting stochastic weather generation algorithms for climate change studies. Clim. Change, 22, 67-84.
  • Wilks, D.S. (1998). Multisite generalization of a daily stochastic precipitation generation model. J. Hydrol., 210, 178-191.
  • Xu, C.Y., Widen, E. i Halldin, S. (2005). Modelling hydrological consequences of climate change – progress and challenges. Adv. Atmos. Sci., 22 (6), 789-797.
  • Zorita, E. i Storch von, H. (1999). The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J. Clim., 12(8), 2474-2489.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a487458-00e3-444f-9c49-2ba1b7e6e53c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.