PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anomaly detection in server metrics with use of one-sided median algorithm

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we consider the problem of anomaly detection over time series metrics data took from one of corporate grade mail service cluster. We propose the algorithm based on one-sided median concept and present some results of experiments showing impact of parameters settings on algorithm performance. In addition we present short description of classes of anomalies discovered in monitored system. Proposed one-sided median based algorithm shows great robustness and good detection rate and can be considered as possible simple production ready solution.
Rocznik
Strony
5--22
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
  • OVH SAS, Wrocław, Poland
autor
  • Department of Systems and Computer Networks Wrocław University of Science and Technology, Wrocław, Poland
Bibliografia
  • 1. Nairac A., Townsend N., Carr R., King S., Cowley P., Tarassenko L., 1999, A System for the Analysis of Jet Engine Vibration Data Integrated Computer Aided Engineering, Boulder, 6, 1, pp. 53–66.
  • 2. Budalakoti S., Srivastava A., Akella R., Turkov E., 2006, Anomaly Detection in Large Sets of High-dimensional Symbol Sequences, Tech. Rep. NASA TM2006-214553, NASA Ames Research Center
  • 3. Eskin E., Arnold A., Prerau M., Portnoy L., Stolfo S., 2002, A Geometric Framethe Analysis of Jet Engine Vibration Data Integrated Computer Aided Engineering, Boulder, 6, 1, pp. 53–66.
  • 4. Pan X., Tan J., Kavulya S., Gandhi R., Narasimhan P., 2010, Ganesha: BlackBox Diagnosis of MapReduce Systems, SIG-METRICS Performance Evaluation Review, 37, 3, pp. 8–13
  • 5. Williams A.W., Pertet S. M., Narasimhan P., 2007, Tiresias: Black-box Failure Prediction in Distributed Systems, 21st Intl. Parallel and Distributed Processing Symposium (IPDPS), pp. 1-8
  • 6. Silvestri G., Verona F., Innocenti M., Napolitano M., 1994, Fault Detection using Neural Networks, IEEE Intl. Conf. on Neural Networks, pp. 3796–3799
  • 7. Angiulli F., Fassetti F., 2007, Detecting Distance-based Outliers in Streams of Data, 16th ACM Conf. on Information and Knowledge Management (CIKM), pp 811-820
  • 8. Yang D., Rundensteiner E. A., Ward M.O., 2009, Neighbor based Pattern Detection for Windows over Streaming Data, 12th Intl. Conf. On Extending Database Technology: Advances in Database Technology (EDBT), pp 529-540
  • 9. Tsay R.S., Pena D., Pankratz A.E., 2000, Outliers in Multivariate Time Series, Biometrika, 87, 4, pp. 789-804
  • 10. Hill D. J., Minsker B. S., 2010, Anomaly Detection in Streaming Environmental Sensor Data: A Data-driven Modeling Approach, Environmental Modelling and Software, 25, 9, pp. 1014–1022
  • 11. Justel A., Pena D., Tsay R.S, 2001, Detection of Outlier Patches in Autoregressive Time Series, Statistica Sinica, 11, 3, pp. 651-674
  • 12. Luceno A., 1998, Detecting Possibly Non-Consecutive Outliers in Industrial Time Series, Journal of the Royal Statistical Society. Series B (Statistical Methodology), 60, 2, pp. 259-310
  • 13. Basu S., Meckesheimer M., 2007, Automatic Outlier Detection for Time Series: An Application to Sensor Data, Knowledge and Information Systems – Special Issue on Mining Low-Quality Data, 11, 2, pp. 137-154
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a45140a-0c80-4d85-a1db-6a7d65bda361
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.