Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Friction Stir Welding (FSW) was applied austenitic stainless steels that is difficult to weld using FSW technique. Proper weld can be obtained by using appropriate welding parameter. In this paper, the effect of different tool rotational speeds, traverse speeds, compressive tool forces, and tool angles was investigated. Design/methodology/approach: The dimension of 3 mm x 75 mm x 150 mm two stainless steel plates were used and butt welded by FSW method using 7.5 kW vertical head milling machine. All welded test specimens were prepared perpendicular to the weld line in order to determine the mechanical properties and tested with 12 MPa/sec stress rate under stress control using a servo-hydraulic Instron 8801. Microstructure of the welding zone and macrograph of the heat affected zone was investigated by SEM. Findings: The average grain size in the SZ was between 3 and 7 μm, which is smaller than that in the BM. The average grain size in the HAZ was about 20 μm, which is half of that in the BM. Fine-grained microstructures are present the welded area. The dark bands observed in the weld zone were also detected the microstructure of the transition zone. Dark and narrow bands do not consist of pores or cavities. It was determined that these bands do not process an ultra fine-grained microstructure. They are Cr2O3 oxide layers which over the surface of stainless steels may have been ruptured during friction stir welding and may form bands inside the welding bead due to stirring. Research limitations/implications: The proper cooling system helps to prevent the stirrer tool from the deformation. Practical implications: The strength of the welded zone of AISI 304 stainless steel can be easily found by implementing welding design parameters and high quality joints can be obtained. Originality/value: This study was performed in the frame of the TUBITAK project no 106M504, „Friction Stir Weldability of Stainless Steels and Investigation of the Affected Parameters on the Welding Quality”.
Wydawca
Rocznik
Tom
Strony
432--439
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
- Mechanical Engineering Department, Engineering Faculty, Pamukkale University, 20070 Kinikli, Denizli, Turkey
autor
- Mechanical Engineering Department, Engineering Faculty, Pamukkale University, 20070 Kinikli, Denizli, Turkey
Bibliografia
- [1] W.M. Thomas, Friction stir butt welding, International Patent Appl. No. PCT/GB92/02203 and GB Patent Appl. No.9125978.8, US Patent No. 5460, 317, 1991.
- [2] M.M. Attallah, H.G. Salem, Friction stir welding parameters: a tool for controlling abnormal grain growth during subsequent heat treatment, Materials Science and Engineering A 391/1-2 (2005) 51-59.
- [3] K.A.A. Hassan, P.B. Prangnell, A.F. Norman, D.A. Price, S.W. Williams, The Effect of Welding Parameters on the Nugget Zone Microstructure and Properties in High Strength Al-Alloy Friction Stir Welds, Science and Technology of Welding and Joining 8 (2003) 257-268.
- [4] Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki, K. Nakara, Effect of welding parameters on microstructure in the stir zone of FSW joints of aluminum die casting alloy, Materials Letters 60 (2006) 3830-3837.
- [5] A.P. Reynolds, W. Tang, Z. Khandkar, J.A. Khan, K. Lindner, Relationships among weld parameters, hardness distributions, and temperature histories in alloy 7050 friction stir welds, Science and Technology of Welding and Joining 10 (2005) 190-199.
- [6] T. Saeid, A. Abdollah-Zadeh, H. Assadi, F.M. Ghaini, Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel, Materials Science and Engineering A 496 (2008) 262-268.
- [7] T. Ishikawa, H. Fujii, K. Genchi, S. Iwaki, S. Matsuoka, K. Nogi, High Quality-High Speed Friction Stir Welding of 304 Austenitic Stainless Steel, Journal of the Iron and Steel Institute of Japan 94-11 (2008) 539-544.
- [8] C. Meran, V. Kovan, A. Alptekin, Friction stir welding of AISI 304 austenitic stainless steel, Materialwissenschaft und Werkstofftechnik 38 (2007) 829-835.
- [9] Y.S. Sato, T.W. Nelson, C.J. Sterling, R.J. Steel, C.O. Pettersson, Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel, Materials Science and Engineering A 397 (2005) 376-384.
- [10] Y.S. Sato, T.W. Nelson, C.J. Sterling, Recrystallization in type 304L stainless steel during friction stirring, Acta Materialia 53 (2005) 637-645.
- [11] A.P. Reynolds, W. Tang, M. Posada, J. Deloach, Friction stir welding of DH36 steel, Science and Technology of Welding and Joining 8/6 (2003) 455-460.
- [12] S.H.C. Park, S. Yutaka, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Rapid formation of the sigma phase in 304 stainless steel during friction stir welding, Scripta Materialia 49 (2003) 1175-1180.
- [13] A.P. Reynolds, M. Posada, J. Deloach, M.J. Skinner, J. Halpin, T.J. Lienert, FSW of austenitic stainless steels, Proceedings of the 3rd International Symposium “Friction Stir Welding”, Kobe, Japan, 2001.
- [14] O. Lorrain, V. Favier, H. Zahrouni, D. Lawrjaniec, Understanding the material flow path of friction stir welding process using unthreaded tools, Journal of Materials Processing Technology 210 (2010) 603-609.
- [15] S.R. Ren, Z.Y. Ma, L.Q. Chen, Effect of welding parameters on tensile properties and fracture behavior of friction stir welded Al–Mg–Si alloy, Scripta Materialia 56 (2007) 69-72.
- [16] L. Zhou, H.J. Liu, Q.W. Liu, Effect of rotation speed on microstructure and mechanical properties of Ti–6Al–4V friction stir welded joints, Materials and Design 31/5 (2010) 2631-2636
- [17] Z. Zhang, H.W. Zhang, Numerical studies on the effect of transverse speed in friction stir welding, Materials and Design 30/3 (2009) 900-907.
- [18] Z. Zhang, H.W. Zhang, Numerical studies on controlling of process parameters in friction stir welding, Journal of Materials Processing Technology 209/1 (2009) 241-270.
- [19] Y.H. Zhao, S.B. Lin, L. Wu, F. Xing Qu, The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy, Materials Letters 59/23 (2005) 2948-2952.
- [20] R.A. Prado, L.E. Murr, D.J. Shindo, Tool wear in the friction-stir welding of aluminum alloy 6061+20% Al2O3: a preliminary study, Scripta Materialia 45/1 (2001) 75-80.
- [21] M. Boz, A. Kurt, The influence of stirrer geometry on bonding and mechanical properties in friction stir welding process, Materials and Design 25/4 (2004) 343-347.
- [22] R.A. Prado, L.E. Murr, D. J. Shindo, K.F. Soto, Self-optimization in tool wear for friction-stir welding of Al 6061+20% Al2O3MMC, Materials Science and Engineering A 349/1-2 (2003) 156-165.
- [23] K. Elangovan, V. Balasubramanian, Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy, Materials and Design 29 (2008) 362-373.
- [24] T.J. Lienert, W.L. Stellwag, J. Grimmett, R.W. Warke, Friction Stir Welding Studies on Mild Steel, Welding Journal Research Supplement 82/1 (2003) 1-9.
- [25] P.J. Konkol, J.A. Mathers, R. Johnson, J.R. Pickens, Friction Stir Welding of HSLA-65 Steel for Shipbuilding, Journal of Ship Production 19/3 (2003) 159-164.
- [26] H. Liu, L. Zhou, Progress in friction stir welding of high melting point materials, Transactions of the China Welding Institution 28 (2007) 101.
- [27] R. Nandan, G.G. Roy, T.J. Lienert, T. Debroy, Three-dimensional heat and material flow during friction stir welding of mild steel, Acta Materialia 55/3 (2007) 883-895.
- [28] J.H. Cho, D.E. Boyce, P.R. Dawson, Modeling strain hardening and texture evolution in friction stir welding of stainless steel, Materials Science and Engineering A 398 (2005) 146-163.
- [29] C.J. Sterling, T.W. Nelson, C.D. Sorensen, R.J. Steel, S.M. Packer, in: K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, T. Lienert, (Eds.), Friction Stir Welding and Processing II, 2003, 165.
- [30] T.J. Lienert, J.E. Gould, in: Proceedings of the First International Symposium on Friction Stir Welding, California, 1999.
- [31] W.M. Thomas, P.L. Threadgill, E.D. Nicholas, Feasibility of Friction Stir Welding Steel, Science and Technology of Welding and Joining 4/6 (1999) 365-372.
- [32] H. Kokawa, S.H.C. Park, Y.S. Sato, K. Okamoto, S. Hirano, M. Inagaki, Microstructural Evolution of 304 Austenitic Stainless Steel during Friction Stir Welding, Proceedings of Friction Stir Welding Symposium at the 14th International Society of Offshore and Polar Engineers Conference, ISOPE 2004, Toulon, France, 2004, vol. 4, 73-77.
- [33] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Materials Science and Engineering: R: Reports 50/1-2 (2005) 1-78.
- [34] S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Corrosion resistance of friction stir welded 304 stainless steel, Scripta Materialia 51 (2004) 101-105.
- [35] M. Posada, J. Deloach, A.P. Reynolds, J.P. Halpin, in: K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, D.P. Filed (Eds.), Friction Stir Welding and Processing, Warrendale, PA, USA, 2001, 159.
- [36] C. Meran, O.E. Canyurt, Evaluation of Microstructure in Friction Stir Welded Austenitic Stainless Steels, Proceedings of the 63rd Annual Assembly and International Conference of the International Institute of Welding, Istanbul, Turkey, 2010, 853-857.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a3d0f82-5974-4426-b708-3e7204e53c62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.