PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microwave heating process – characteristics, benefits, hazards and use in food industry and households – a review ®

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ogrzewanie mikrofalowe – charakterystyka, korzyści i zagrożenia oraz zastosowanie w przemyśle spożywczym i gospodarstwach domowych – przegląd®
Języki publikacji
EN
Abstrakty
EN
The article presents the advantages and disadvantages of using microwave heating in the food industry and in households. A review of the literature in this field revealed many positive aspects of microwave heating. The microwave oven enables fast heat transfer, which translates into a short heating time and high energy efficiency compared to a conventional heating process. The efficiency of the process depends on many factors, including the shape and size of the product, the properties and position of the food during heating, and the process parameters used. However, the challenge for producers is still uneven temperature distribution, and hence uneven heating of the product. In summary, the quality of food prepared in a microwave oven differs from that of food prepared with conventional heating. The authors report both the highest and average sensory quality of vegetables prepared in a microwave oven and good nutrients retention. However, microwave heating also raises concerns among consumers due to the penetration of waves into the product and among other the possibility of acrylamide formation, as well as the safety of people operating the devices. Based on the research, it is known that the combination of microwave heating and conventional methods significantly improves the efficiency of the process, affecting the higher product quality, including the microbiological quality of the products obtained in this way.
PL
W artykule przedstawiono zalety i wady stosowania ogrzewania mikrofalowego w przemyśle spożywczym oraz w gospodarstwach domowych. Przegląd literatury z tego zakresu wykazał wiele pozytywnych aspektów ogrzewania mikrofalowego. Kuchnia mikrofalowa umożliwia szybki transfer ciepła, co przekłada się na krótki czas nagrzewania, wysoką efektywność energetyczną w porównaniu z konwencjonalnym procesem ogrzewania. Wydajność procesu zależy od wiele czynników, m.in. kształtu i wielkości produktu, właściwości i położenia żywności podczas ogrzewania a także zastosowanych parametrów procesu. Wyzwanie dla producentów wciąż jednak stanowi nierównomierny rozkład temperatury, a co za tym idzie nierównomierne nagrzewanie się produktu. Podsumowując, jakość żywności przygotowanej w kuchence mikrofalowej różni się w porównaniu z żywnością przygotowywaną za pomocą ogrzewania konwencjonalnego. Autorzy donoszą zarówno o najwyższej, jak i przeciętnej jakości sensorycznej warzyw przygotowanych w kuchni mikrofalowej oraz o dobrym zachowaniu składników odżywczych. Jednakże ogrzewanie mikrofalowe budzi też obawy wśród konsumentów ze względu na wnikanie fal w głąb produktu i m.in. możliwość tworzenia się akryloamidu, a także bezpieczeństwo osób obsługujących urządzenia. Na podstawie badań wiadomo, że połączenie ogrzewania mikrofalowego i metod konwencjonalnych znacznie poprawia wydajność procesu, wpływając na wyższą jakość produktu, w tym jakość mikrobiologiczną tak uzyskanych produktów.
Rocznik
Tom
Strony
152--167
Opis fizyczny
Bibliogr. 99 poz.
Twórcy
  • Warsaw University of Life Sciences
  • Warsaw University of Life Sciences
  • University of Applied Sciences, Kaunas, Lithuania
Bibliografia
  • [1] AHMAD S. S., M. T. MORGAN, M. R. OKOS. 2001. ‟Effects of microwave on the drying, checking and mechanical strength of baked biscuits”. Journal of Food Engineering 50(2): 63–75. https://doi. org/10.1016/S0260-8774(00)00186-2
  • [2] AHMED J, H. S. RAMASWAMY, V. G. S. RAGHAVAN. 2007. ‟Dielectric properties of butter in the MW frequency range as affected by salt and temperaturę”. Journal of Food Engineering 82: 351– 358. https://doi.org/10.1016/j.jfoodeng.2007.02.049
  • [3] ALAJAJI S. A., T. A. EL-ADAWY. 2006. ‟Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods”. Journal of Food 2016. ‟Microwave and ultrasound enhancement of convective drying of strawberries: Experimental and modeling efficiency”. Int. J. Heat Mass Transfer 103: 1065–1074 https://doi.org/10.1016/j.
  • [4] ANGIOLILLO L., M. A. DEL NOBILE, A. CONTE. 2015. ‟The extraction of bioactive compounds from food residues using microwaves”. Current Opinion in Food Science 5: 93–98. https://doi. org/10.1016/j.cofs.2015.10.001
  • [5] BAINS K., V. UPPAL, H. KAUR. 2014. ‟Optimization of germination time and heat treatments for enhanced availability of minerals from leguminous sprouts”. Journal of food Science and Technology 51(5): 1016–1020. https://doi.org/10.1007/s13197- 011-0582-y
  • [6] BARBOSA-CÁNOVAS G. V., I. MEDINA-MEZA, K. CANDOĞAN, D. BERMÚDEZ-AGUIRRE. 2014. ‟Advanced retorting, microwave assisted thermal sterilization (MATS), and pressure assisted thermal sterilization (PATS) to process meat products”. Meat Science 98: 420–434. https://doi.org/10.1016/j. meatsci.2014.06.027
  • [7] BASAK T., M. BHATTACHARYA, S. PANDA. 2016. ‟A generalized approach on microwave processing for the lateral and radial irradiations of various groups of food materials”. Innov. Food Sci. Emerg. Technol. 33: 333–347. https://doi.org/10.1016/j.ifset. 2015.11.009
  • [8] BASKAR G., G. KALAVATHY, R. AISWARYA, I. ABARNAEBENEZER SELVAKUMARI. 2019.‟7 – Advances in bio-oil extraction from nonedible oil seeds and algal biomass”. In K. Azad (Ed.). Advances in eco-fuels for a sustainable environment (pp. 187– 210). Woodhead Publishing. https://doi.org/10.1016/ B978-0-08-102728-8.00007-3
  • [9] BEDANE T.F., F. ERDOGDU, J. G. LYNG, F. MARRA. 2021. ‟Effects of geometry and orientation of food products on heating uniformity during radio frequency heating”. Food Bioprod. Process. 125: 149–160. https://doi.org/10.1016/j.fbp.2020.11.010
  • [10] BHATTACHARYA M., T. BASAK. 2017. ‟A comprehensive analysis on the effect of shape on the microwave heating dynamics of food materials”. Innov. Food Sci. Emerg. Technol. 39: 247 –266. https://doi. org/10.1016/j.ifset.2016.12.002
  • [11] BHATTACHARYA M., T. BASAK, S. SRIRAM. 2014. ‟Generalized characterization of microwave power absorption for processing of circular shaped materials”. Chem. Eng. Sci. 118: 257–279. https:// doi.org/10.1016/j.ces.2014.06.029
  • [12] BORNHORST ER, J. TANG, S. S. SABLANI. 2017. ‟Development of model food systems for thermal pasteurization applications based on Maillard reaction products novas”. LWT—Food Science and Technology 75: 417–424. https://doi.org/10.1016/j. lwt.2016.09.020
  • [13] BOZKURT-CEKMER H., P. M. DAVIDSON. 2017. ‟11 – microwaves for microbial in-activation – efficiency and inactivation kinetics”. In M. Regier, K. Knoerzer, & H.Schubert (Eds.).The microwave processing of foods: 220–251, (2nd ed.).Woodhead Publishing https://doi.org/10.1016/B978-0-08-100528- 6.00011-5
  • [14] CHANDRASEKARAN S., S. RAMANATHAN, T. BASAK. 2013. ‟Microwave food processing – A review”. Food Research International 52(1): 243-261. https://doi.org/10.1016/j.foodres.2013.02.033
  • [15] CHAVAN R., S. CHAVAN. 2010. ‟Microwave baking in food industry: A review”. International Journal of Dairy Science 5: 113–127. DOI: 10.3923/ ijds.2010.113.127
  • [16] CHEN J., K. PITCHAI, S. BIRLA, D. JONES, M. NEGAHBAN, J. SUBBIAH. 2016. ‟Modeling heat and mass transport during microwave heating of frozen food rotating on a turntable”. Food Bioprod. Process 99: 116–127. https://doi.org/10.1016/j. fbp.2016.04.009
  • [17] CUI Z. W., S. Y. XU, D. W. SUN. 2004. ‟Microwave– vacuum drying kinetics of carrot slices”. Journal of Food Engineering 65(2): 157–164. https://doi. org/10.1016/j.jfoodeng.2004.01.008
  • [18] CZARNIECKA-SKUBINA E., B. GOŁASZEWSKA. 2001. ‟Wpływ procesu kulinarnego na jakość wybranych warzyw”. Żywność. Nauka. Technologia. Jakość: 2 (27): 103–116.
  • [19] CZARNIECKA-SKUBINA E., B. GOŁASZEWSKA, I. WACHOWICZ. 2003. ‟Effect of culinary process on beet roots quality.” E lectronic Journal of Polish Agricultural Universities, Food Science and Technology: 6.
  • [20] CZARNIECKA-SKUBINA E., J. TRAFIALEK, D. KOCON, M. PIELAK. 2016. ‟Wykorzystanie kuchenek mikrofalowych do przygotowania potraw w polskich gospodarstwach domowych”. Żywność. Nauka. Technologia.Jakość 23(6). DOI: 10.15193/ zntj/2016/109/168
  • [21] DE LA VEGA-MIRANDA B., N. A. SANTIESTEBAN- LÓPEZ, A. LÓPEZ-MALO, M. E. SOSAMORALES. 2012. ‟Inactivation of Salmonella Typhimurium in fresh vegetables using water-assisted microwave heating”. Food Control 26: 19–22. https:// doi.org/10.1016/j.foodcont.2012.01.002
  • [22] DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, Principles of Microwave Oven.http://tera.yonsei.ac.kr/class/2004_2/ project/microwaveoven_team1.pdf avaible on 22.03.2022
  • [23] DINANI S.T., M. HASIC, M. AUER, U. KULOZIK. 2020. ‟Assessment of uniformity of microwave- based heating profiles generated by solid-state and magnetron systems using various shapes of test samples”. Food Bioprod. Process. 124: 121–130. https://doi.org/10.1016/j.fbp.2020.08.013
  • [24] FARBER JM, J. Y. D’AOUST, M. DIOTTE. 1998. ‟Survival of listeria spp. on raw whole chickens cooked in microwave ovens”. Journal of Food Protection 61: 1465–1469. https://doi.org/10.4315/0362- 028X-61.11.1465
  • [25] FENG H.,Y. YIN, J. TANG. 2012. ‟Microwave drying of food and agricultural materials: Basics and heat and mass transfer modeling”. Food Engineering Reviews 4: 89–106. https://doi.org/10.1007/s12393- 012-9048-x
  • [26] FILIPIAK-FLORKIEWICZ A., E. CIEŚLIK, A. FLORKIEWICZ. 2007. ‟Wpływ obróbki technologicznej na zawartość azotanów [V] i azotanów [III] w kalafiorze”. Żywienie Człowieka i Metabolizm 3(34): 1197–1201.
  • [27] GEDIKLI S., Ö. TABAK, Ö. TOMSUK. 2008. ‟Effect of microwaves on some gram negative and gram positive bacteria”. Journal of Applied Biological Science 2:67–71.
  • [28] GHAFOOR K., M. M. ÖZCAN, A. J. FAHAD, E. E. BABIKER, G. J. FADIMU. 2019. ‟Changes in quality, bioactive compounds, fatty acids, tocopherols, and phenolic composition in oven-and microwave-roasted poppy seeds and oil”. LWT 99: 490–496. https://doi.org/10.1016/j.lwt.2018.10.017
  • [29] GUS. 1995–2021. Statistical Year Book of the Republic of Poland, Statistics Poland, Warsaw, 1995,1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.
  • [30] GULATI T., H. ZHU, A. K. DATTA, K. HUANG. 2015. ‟Microwave drying of spheres: coupled electromagnetics- multiphase transport modeling with experimentation. Part II: model validation and simulation results”. Food Bioprod. Process 96: 326–337. https://doi.org/10.1016/j.fbp.2015.08.003
  • [31] GUO Q, D. SUN, J. CHENG. 2017. ‟Microwave processing techniques and their recent applications in the food industry”. Trends in Food Science & Technology 67: 236–247. https://doi.org/10.1016/j. tifs.2017.07.007
  • [32] HADBAH I.R., M. ABU-JAFAR, I. ABDELRAZIQ. 2014. ‟Effects of Electromagnetic Radiation from Microwave Ovens on Workers’ Health at Cafeterias in some Higher Educational Institutions in Palestine”. Medicine, PhD Thesis.
  • [33] HAMOUD-AGHA M.M., S.CURET, H. SIMONIN. 2013. ‟Microwave inactivation of Escherichia coli K12 CIP 54.117 in a gel medium: Experimental and numerical study”. Journal of Food Engineering116: 315–323. https://doi.org/10.1016/j. jfoodeng.2012.11.030
  • [34] HAMOUD-AGHA M.M, S. CURET, H. SIMONIN. 2014. ‟Holding time effect on microwave inactivation of Escherichia coli K12: Experimental and numerical investigations”. Journal of Food Engineering 143: 102–113. https://doi.org/10.1016/j. jfoodeng.2014.06.043
  • [35] HAYAT K., S. ABBAS, S. HUSSAIN, S. A. SHAHZAD, M. U. TAHIR. 2019. ‟Effect of microwave and conventional oven heating on phenolic constituents, fatty acids, minerals and antioxidant potential of fennel seed”. Industrial Crops and Products 140: 111610. https://doi.org/10.1016/j. indcrop.2019.111610
  • [36] HAZERVAZIFEH A., A.M NIKBAKHT, P.A. MOGHADDAM. 2016. ‟Novel hybridized drying methods for processing of apple fruit: energy conservation approach”. Energy 103: 679–687. https://doi. org/10.1016/j.energy.2016.03.012
  • [37] HEDDLESON R. A, S. DOORES, R. C. ANANTHESWARAN. 1996. ‟Viability loss of salmonella species, Staphylococcus aureus, and Listeria monocytogenes in complex foods heated by microwave Energy”. Journal of Food Protection 59: 813–818. https://doi.org/10.4315/0362-028X-59.8.813
  • [38] HOU L., Y. ZHANG, L. CHEN, X. WANG. 2021. ‟A comparative study on the effect of microwave and conventional oven heating on the quality of flaxseeds”. LWT 139: 110614. https://doi.org/10.1016/j. lwt.2020.110614
  • [39] HUANG Y., J. SHENG, F. YANG, Q. H. HU. 2007. ‟Effect of enzyme inactivation by microwave and oven heating on preservation quality of green tea.” Journal of Food Engineering 78(2): 687–692. https:// doi.org/10.1016/j.jfoodeng.2005.11.007
  • [40] JIANG Z. Q., M. PULKKINEN, Y. J. WANG, A. M. LAMPI, F. L. STODDARD, H. SALOVAARA. 2016. ‟Faba bean flavour and technological property improvement by thermal pre-treatments.” ebensmittel- Wissenschaft und -Technologie- Food Science and Technology 68: 295–305. https://doi.org/10.1016/j. lwt.2015.12.015
  • [41] JI L., Y. XUE, T. ZHANG, Z. LI, CH XUE. 2017. ‟The effects of microwave processing on the structure and various quality parameters of Alaska pollock surimi protein-polysaccharide gels”. Food Hydrocoll. 63: 77–84 https://doi.org/10.1016/j.foodhyd.2016.08.011
  • [42] JONES R. B., C. L. FRISINA, S. WINKLER, M. IMSIC, R. B. TOMKINS. 2010. ‟Cooking method significantly effects glucosinolate content and sulforaphane production in broccoli florets”. Food Chemistry 123(2): 237–242. n Copyright 2010 Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.foodchem. 2010.04.016
  • [43] KIM H. J, I. A. TAUB. 1993. ‟Intrinsic chemical markers for aseptic processing of particulate foods.” Food Technology 47: 91–97.
  • [44] KORZENIOWSKA-GINTER R., A. WILCZYŃSKA, S. CHROSTOWSKA. 2015. ‟Zróżnicowanie cech sensorycznych, parametrów barwy oraz wybranych składników bioaktywnych w gotowanych brokułach”. Ekologia i Technika 6: 331–335.
  • [45] KUMAR C., M.A. KARIM. 2019. ‟Microwaveconvective drying of food materials: a critical review”. Crit. Rev. Food Sci. Nutr. 59: 379–394. https:// doi.org/10.1080/10408398.2017.1373269
  • [46] LAGUERRE J-C, L. ABHAYAWICK, L. BEAUMONT- LANG. 1999. ‟Tailoring the onion crop for the 21st century”. The Development of High Quality Fresh and Processed Onions – Annual Progress Report 3rd Year; Beauvais.
  • [47] LAGUERRE J.-C., M. M. HAMOUD-AGHA. 2020. ‟Microvawe Heating for Food Preservation”. chapter [in:] Socaci S.A., Fărcaş A.C., Laguerre J.-C., Aussenac Th. (Eds.) Food Preservation and Waste Exploitation. IntechOpen. 2020. https://doi.org/10.5772/ intechopen.78920
  • [48] LAKINS D. G., C. Z. ALVARADO, L. D. THOMPSON, M. T. BRASHEARS, J. C. BROOKS, M. M. BRASHEARS. 2008. ‟Reduction of Salmonella Enteritidis in shell eggs using directional microwave technology”. Poultry Science 87: 985–991. https:// doi.org/10.3382/ps.2007-00393
  • [49] LLOMPART M., C. GARCIA-JARES, M. CELEIRO, T. DAGNAC. 2018. ‟Microwave-assisted extraction. Reference module in chemistry, molecular sciences and chemical engineering”. Elsevier. https:// doi.org/10.1016/j.trac.2019.04.029
  • [50] LÓPEZ-BERENGUER C., M. CARVAJAL, D. A. MORENO, C. GARCÍA-VIGUERA. 2007. ‟Effects of microwave cooking conditions on bioactive compounds present in broccoli inflorescences”. Journal of Agricultural and Food Chemistry 55(24): 10001–10007. https://doi.org/10.1021/jf071680t
  • [51] LORENCE M. 2020. ‟Package and product development testing in a microwave oven”. In Development of Packaging and Products for Use in Microwave Ovens. Woodhead Publishing: 367–381. https:// doi.org/10.1016/B978-0-08-102713-4.00012-8
  • [52] LU Y., A. TURLEY, X. DONG, C. WU. 2011. ‟Reduction of Salmonella enterica on grape tomatoes using microwave heating”. International Journal of Food Microbiology 145: 349–352. https://doi. org/10.1016/j.ijfoodmicro.2010.12.009
  • [53] LYRA G. P., V. DOS SANTOS, B. C. DE SANTIS, R. R. RIVABEN, C. FISCHER, E. M. D. J.A. PALLONE, J. A. ROSSIGNOLO. 2019. ‟Reuse of sugarcane bagasse ash to produce a lightweight aggregate using microwave oven sintering”. Construction and Building Materials 222: 222–228. https://doi. org/10.1016/j.conbuildmat.2019.06.150
  • [54] MARSZALEK K., M. MITEK, S. SKAPSKA. 2015. ‟Effect of continuous flow microwave and conventional heating on the bioactive compounds, color, enzymes activity, microbial and sensory quality of strawberry puree”. Food and Bioprocess Technology 9: 1864–1876. https://doi.org/10.1007/s11947-015- 1543-7
  • [55] MARSZAŁEK K., L. WOŹNIAK, S. SKĄPSKA, M. MITEK. 2016. ‟A Comparative study of the quality of strawberry pur´ee preserved by continuous microwave heating and conventional thermal pasteurization during long-term cold storage”. Food and Bioprocess Technology 9: 1100–1112. https://doi. org/10.1007/s11947-016-1698-x
  • [56] MASOOD H, F. J. TRUJILLO, K. KNOERZER. 2018. ‟Designing, Modeling, and Optimizing Processes to Ensure Microbial Safety and Stability Through Emerging Technologies”. Elsevier Inc. DOI: 10.1016/B978-0-12-811031-7.00006-6
  • [57] MICHALAK J., M. CZARNOWSKA-KUJAWSKA, J. KLEPACKA, E. GUJSKA. 2020. ‟Effect of Microwave Heating on the Acrylamide Formation in Foods”. Molecules 25: 4140. https://doi.org/10.3390/ molecules25184140
  • [58] MONTEIRO R. L., B. A. M. CARCIOFI, A. MARSAIOLI, J. B. LAURINDO. 2015. ‟How to make a microwave vacuum dryer with turntable”. Journal of Food Engineering 166: 276–284.
  • [59] NELSON S. O. 2015. ‟Chapter 11 – dielectric properties of selected food materials”. In S. O. Nelson (Ed.). Dielectric properties of agricultural materials and their applications:147–165, San Diego: Academic Press.
  • [60] NEW C.Y., T. Y. THUNG, K. PREMARATHNE, R. A. RAHMAN, A. MOHAMMED, R. SON. 2017. ‟Microwave oven safety: A food safety consumer survey in Malaysia”. Food Control. 80: doi: 10.1016/j. foodcont.2017.05.024
  • [61] OHLSSON T., N. BENGTSSON. 2001. ‟Microwave technology and foods”. Advances in Food and Nutrition Research 43: 65–140. https://doi.org/10.1016/ S1043-4526(01)43003-8
  • [62] PANDIT R. B., J. TANG, F. LIU. 2007. ‟Development of a novel approach to determine heating pattern using computer vision and chemical marker (M- 2) yield”. Journal of Food Engineering 78: 522–528. https://doi.org/10.1016/j.jfoodeng.2005.10.039
  • [63] PENG J., J. TANG, D. LUAN, F. LIU, Z. TANG, F. LI. 2017. ‟Microwave pasteurization of pre-packaged carrots”. Journal of Food Engineering 202: 56– 64. http://dx.doi.org/10.1016/j.jfoodeng.2017.01.003
  • [64] PÓŁTORAK A., J. WYRWISZ, M. MOCZKOWSKA, M. MARCINKOWSKA-LESIAK, A. STELMASIAK, U. RAFALSKA. 2015. ‟Microwave vs. convection heating of bovine gluteus medius muscle: Impact on selected physical properties of final product and cooking yield”. International Journal of Food Science and Technology 50: 958–965. https://doi. org/10.1111/ijfs.12729
  • [65] SALAZAR-GONZÁLEZ C. 2012. ‟Recent Studies Related to Microwave Processing of Fluid Foods”: 31–46.
  • [66] SCHIFFMANN R. F. 2001. ‟Microwave processes for the food industry”. Handbook of mi-crowave technology for food application: 331–370, CRC Press.
  • [67] SCHNEPF M., J. DRISKELL. 1994. ‟Sensory attributes and nutrient retention in selected vegetables prepared by conventional and microwave methods”. Journal of Food Quality 17: 87–99.
  • [68] SCHUBERT H., M. REGIER. 2005. ‟The Microwave Processing of Foods.” CRC Press LLC & Woodhead Publisher Limited, Boca Raton, FL, USA Cambridge England.
  • [69] ŠEVČÍK R, A. KONDRASHOV, F. KVASNIČKA. 2009. ‟The impact of cooking procedures on antioxidant capacity of potatoes”. J Food Nutr Res 48: 171–177.
  • [70] SHAHEEN M. S, K. F. EL-MASSRY, A. H. ELGHORAB. 2012. ‟Microwave Applications in Thermal Food Processing”. In The Development and Application of Microwave Heating; IntechOpen: London, UK : 3–16.
  • [71] SONG W.-J., D. H. KANG. 2016. ‟Influence of water activity on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in peanut butter by microwave heating”. Food Microbiol. 60: 104–111. https://doi.org/10.1016/j. fm.2016.06.010
  • [72] SONI A., J. SMITH, A. THOMPSON, G. BRIGHTWELL. 2020. ‟Microwave-induced thermal sterilization – a review on history, technical progress, advantages and challenges as compared to the conventional methods”. Trends Food Sci.Technol. 97: 433–442. https://doi.org/10.1016/j.tifs.2020.01.030
  • [73] SOTO-REYES N., A. L. TEMIS-PÉREZ, A. LÓ- PEZ-MALO, R. ROJAS-LAGUNA, M. E. SOSAMORALES. 2015. ‟Effects of shape and size of agar gels on heating uniformity during pulsed microwave treatment”. J. Food Sci. 80: E1021–E1025. https:// doi.org/10.1111/1750-3841.12854
  • [74] SPENCER P. L. 1950. ‟Method of treating foodstuffs”. U.S. Patent 2(495): 429.
  • [75] SURATI M. A., S. JAUHARI, K. DESAI. 2012. ‟A brief review: Microwave assisted organic reaction”. Archives of Applied Science Research 4: 645–661.
  • [76] SYNOWIEC-WOJTAROWICZ A, A. KUDELSKI, A. BIELIŃSKA. 2012. ‟Wpływ procesów technologicznych na zmiany potencjału antyoksydacyjnego i parametry barwy soków jabłkowych”. Bromat. Chem. Toksykol. 45: 975–979.
  • [77] SZADZIŃSKA J., S.J. KOWALSKI, M. STASIAK. 2016. ‟Microwave and ultrasound enhancement of convective drying of strawberries: Experimental and modeling efficiency”. Int. J. Heat Mass Transfer 103: 1065–1074 https://doi.org/10.1016/j. ijheatmasstransfer.2016.08.001
  • [78] TANG J. 2015. ‟JFS Special Issue: 75 Years of Advancing Food Science, and Preparing for the Next 75 Unlocking Potentials of Microwaves for Food Safety and Quality”. 80. Epub ahead of print. 2015. DOI: 10.1111/1750-3841.12959
  • [79] TANG J., Y. K. HONG, S. INANOGLU, F. LIU. 2018. ‟Microwave pasteurization for ready to-eat meals”. Current Opinion in Food Science 23: 133– 141. https://doi.org/10.1016/j.cofs.2018.10.004
  • [80] THE GOVERNMENT OF THE HONG KONG. 2005. ‟Microwave cooking and food safety. Risk Assessment Studies, Report No 19”. Food and Environmental Hygiene Department. Hong Kong.
  • [81] TURKMEN N, F. SARI, Y. S. VELIOGLU. 2005. ‟The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables”. Food Chem. 93: 713–718. https://doi.org/10.1016/j. foodchem.2004.12.038
  • [82] WACHTEL-GALOR S., K. W. WONG, I. F. BENZIE. 2008. ‟The effect of cooking on Brassica vegetables.” Food chemistry 110(3): 706–710. https://doi. org/10.1016/j.foodchem.2008.02.056
  • [83] WORLD HEALTH ORGANIZATION. 2005. ‟Electromagnetic fields and public health Intermediate Frequencies (IF)”. International EMF Project Information Sheet: 1–4.
  • [84] WILSON M. 2019. ‟How many American households have microwaves?”, https://www.restaurantnorman. com/category/science/
  • [85] VADIVAMBAL R., D. S. JAYAS. 2010. ‟Non-uniform temperature distribution during microwave heating of food materials – a review”. Food and Bioprocess Technology 3: 161–171. https://doi.org/10.1007/ s11947-008-0136-0
  • [86] VALLEJO F., F. A. TOMAS-BARBERAN, C. GARCIA-VIGUERA. 2002. ‟Glucosinolates and vitamin C content in edible parts of broccoli fl orets after domestic cooking”. Eur. Food Res. Technol. 215: 310-316. https://doi.org/10.1007/s00217-002- 0560-8
  • [87] VERKERK R., M. DEKKER. 2004. ‟Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. Capitata f. rubra DC.) after various microwave treatments”. Journal of Agricultural and Food Chemistry 52(24): 7318–7323. https://doi. org/10.1021/jf0493268
  • [88] YANG R., Q. CHEN, J. CHEN. 2021B. ‟Comparison of heating performance between inverter and cycled microwave heating of foods using a coupled multiphysics-kinetic model”. J. Microw. Power Electromagn. Energy 55: 45–65. https://doi.org/10.1080/0 8327823.2021.1877244
  • [89] YAN B., L. JIAO, J. LI, X. ZHU, S. AHMED, G. CHEN. 2021. ‟Investigation on microwave torrefaction: parametric influence, TG-MS-FTIR analysis, and gasification performance”. Energy 220: 119794. https://doi.org/10.1016/j.energy.2021.119794
  • [90] ZEINALI T., A. JAMSHIDI, S. KHANZADI, M. AZIZZADEH. 2015. ‟The effect of short-time microwave exposures on Listeria monocytogenes inoculated onto chicken meat portions”. Veterinary Research Forum : An International Quarterly Journal 6: 173–176.
  • [91] ZHANG H., A. K. DATTA. 2003. ‟Microwave power absorption in single- and multiple-item foods”. Food Bioprod. Process. 81: 257–265 https://doi. org/10.1205/096030803322438027
  • [92] ZHANG H., A. K. DATTA. 2005a. ‟Heating concentrations of microwaves in spherical and cylindrical foods part one: in planes waves”. Food Bioprod. Process 83: 6–13. https://doi.org/10.1205/fbp.04046
  • [93] ZHANG H., A. K. DATTA. 2005b. ‟Heating concentrations of microwaves in spherical and cylindrical foods part two: in a cavity”. Food Bioprod. Process 83: 14–24. ttps://doi.org/10.1205/fbp.04047
  • [94] ZHANG D, Y. HAMAUZU. 2004. ‟Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking”. Food Chem. 88: 503–509. https://doi.org/10.1016/j.foodchem.2004.01.065
  • [95] ZHANG Z., T. SU, S. ZHANG. 2018. ‟Shape effect on the temperature field during microwave heating process. J. Food Qual.: 1–24. https://doi. org/10.1155/2018/9169875
  • [96] ZHANG M., J. TANG, A. MUJUMDAR, S.WANG. 2006. ‟Trends in microwave-related drying of fruits and vegetables.” Trends in Food Science & Technology 17: 524–534. https://doi.org/10.1016/j. tifs.2006.04.011
  • [97] ZHOU B. W, S. G. SHIN, K. H. HWANG. 2010. ‟Effect of microwave irradiation on cellular disintegration of gram positive and negative cells”. Applied Microbiology and Biotechnology 87: 765–770. DOI: 10.1007/s00253-010-2574-7
  • [98] ZHU H., T. GULATI, A. K. DATTA, K. HUANG. 2015. ‟Microwave drying of spheres: coupled electromagnetics- multiphase transport modeling with experimentation. Part I: model development and experimental methodology”. Food Bioprod. Process 96: 314–325. ttps://doi.org/10.1016/j.fbp.2015.08.003
  • [99] ZIELINSKA M., A. MICHALSKA. 2016. ‟Microwave- assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture.” Food Chemistry 212: 671–680.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a3ca383-80bd-4872-840f-7526abf3c253
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.