

41

A MOBILE MINI-ROBOT ARCHITECTURE

FOR RESEARCH, EDUCATION AND POPULARIZATION

OF SCIENCE

Sol Pedre
1
, Pablo de Cristóforis

1
, Javier Caccavelli

1
, Andrés Stoliar

1

1
Departamento de Computacióon,

 Facultad de Ciencias Exactas y Naturales,

Universidad de Buenos Aires

Buenos Aires, Argentina

 (spedre, pdecri, jcaccav, astoliar)@dc.uba.ar

Abstract

Mobile mini-robots are commonly used for research, education and

popularization of science. Often, commercially available mini-robots don't quite

fit the characteristics needed for a particular task, and are difficult to adapt since

they have proprietary software and hardware. Moreover, they are often quite

expensive. In this work we present a relatively low-cost, reconfigurable robot

equipped with a wide variety of sensors and enough processing power to allow

the on-board execution of intelligent algorithms. We present the complete

hardware architecture, and a modularized software architecture that makes full

use of hardware interruptions and software processes to have a perfectly timed

control of the robot. All these characteristics make the new mobile mini robot

ExaBot a very malleable, multi task mini-robot.

Key words: mobile mini robot, reconfigurable hardware architecture, interrupt

based software architecture, research and education robot platform

1 Introduction

Mobile mini-robots are commonly used for research, education and popu-

larization of science. There are many commercial mini-robots available.

However, often these mini-robots don't quite fit the characteristics we need

for certain tasks and are very difficult to adapt because they have proprietary

software and hardware. For example, Khepera [1] mini-robots are well

known, and widely used for research and education, but are limited when

modifications to their sensing or programming capabilities are needed. Anoth-

er example of commercial mini robots are LEGO Mindstorm [2] - a good tool

Pedre S., Cristóforis P., Caccavelli J., Stoliar A.

42

for popularization of robotics and science in high schools and universities.

However, these robots are not suitable for research.

Another important drawback of commercial mini-robots is their cost, often

way over the budget of many universities or study centers. This makes buying

or 2 Mobile mini-robot architecture upgrading these robots difficult, and lim-

its the possibilities for multi-robot system's research. Finally, the knowledge

gained from the design and construction of robots from scratch is a major

incentive for this task.

Taking as a premise that “There is no robotics without robots”, and know-

ing that often commercially available robots do not have the characteristics

needed for some tasks or are too expensive to acquire, developing new robot

prototypes for research, education and popularization of science becomes

a relevant task.

The motivation of this work is to design and build a robot prototype of re-

duced cost with a reconfigurable sensing system and enough processing pow-

er to allow the on-board execution of intelligence algorithms and to process

the sensor's information.

In this paper we present the ExaBot: a mini-robot developed in the Labora-

torio de Robótica y Procesamiento Embebido, Departamento de Computación,

Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. The

rest of this paper is organized as follows: in section 2 we describe the general

hardware architecture of the ExaBot and its possible configurations, in section

3 we describe the different sensors available and the needed hardware archi-

tecture to control them, in section 4 we describe the motors in the robot and

the hardware related to them. In section 5 we describe the modularized, inter-

rupt and process based software architecture. In section 6 we discuss the re-

sults of this work and show examples of the use of the ExaBot in research,

education and popularization of science. Finally, we draw some conclusions

and present ongoing work in section 7.

2 Hardware architecture

In this section we describe the general architecture of the robot: the chosen

mechanical body, the different processing units and communication buses.

We also present two possible architecture configurations of the ExaBot.

2.1 Mechanical kit

As our goal in this work was to design and implement the electronics and

software needed for the construction of the robot, we chose to use a pre-built

mechanical kit to leave most mechanical problems aside. We reviewed several

models, and decided to use the Traxster Kit [3]. This kit is relatively small

A Mobile Mini-Robot Architecture ...

43

(229 mm length x 203 mm wide x 76 mm height) yet it can accommodate all

the needed electronics and processing units. It is quite light because it is alu-

minum made. It comes with two direct current motors (7,2 V and 2

Amp/hour) that have built-in quadrature encoders. It has two caterpillars that

allow the robot to move in different environments and go over small ob-

stacles. Of course, the election of this mechanical kit constrained future deci-

sions, such as the needed battery to power up the robot or the layout and de-

sign of the control board. Mobile mini-robot architecture 3

2.2 Architecture configuration

Fig. 1 shows the general architecture of the ExaBot. The architecture has an

embedded PC104 as central processing unit and 3 Microchip PIC microcon-

trollers: one to control most of the sensors, and one to control each DC motor

included in the Traxster Kit.

Figure 1. ExaBot architecture

Embedded PC The Exabot is designed so it may be used as a platform for

research experiences. In order for the robot to be autonomous, we included an

on-board processing unit capable of executing artificial intelligence algo-

rithms applied to robots such as automatic learning, neural networks, robotics

vision, among others. The robot has an embedded ARM 9 PC104 of 200 Mhz

TS-7250 [4]. This embedded PC has 2 USB ports, a serial port and an Ether-

net port. It runs a Linux Kernel 2.24, and controls all the PICs, the communi-

cation with an external PC and also controls the webcam.

Communications The communication between the PC104 and the micro-

controllers is by means of a SPI (Serial Peripheral Interface) bus. This is a full

duplex, serial and synchronous communication bus between one master and

many slaves. We chose it over other possible serial buses such as I
2
C or

RS232 since it is much simpler to implement and it meets exactly what we

Pedre S., Cristóforis P., Caccavelli J., Stoliar A.

44

needed: fast communication between one fixed master (the PC104) and many

slaves (all the PICs). To communicate with external PCs, the ExaBot has an

Ethernet and a Wi-Fi connection provided by the PC104 and a wi-fi USB key.

Programming the robot To program the robot in this configuration is

very simple since the PC104 has a Linux operating system. There are several

open source cross-compilers and tool-chains to program embedded ARMs

like the TS7250, for example using C++ and the gcc compiler.

2.3 Reconfigurable architecture

We included the embedded PC mainly to have enough processing power to

run different algorithms for research purposes. However, there are several

research purposes that don't need so much processing, and research is not the

only goal of the ExaBot. There are many education and popularization activi-

ties for which the PC104 is not needed. For those tasks, we prepared the Ex-

aBot to work without the PC104. In this way, the robot cost is significantly

reduced (the PC104 is about 20 percent of the cost of the robot). The power

consumption is also smaller, making it possible for the ExaBot to run auto-

nomously longer. This alternate architecture is shown on Fig. 2.

Figure 2. ExaBot architecture without the PC104

In this configuration, the robot's control algorithm is executed in the PIC

that controls the sensors (PIC18F4680).

Communications The communication between the PICs is the same SPI:

the PIC18F4680 is prepared to be the master of the SPI bus. Communication

with external computers changes: in the other architecture it was Wi-Fi or

Ethernet from the PC104. We included an RS232 driver connected to the

PIC18F4680 to provide an RS232 bus connection with external PCs if needed.

This can be a wireless connection if a RadioMetrix module is added. In this

way, algorithms may be run in external PCs and commands sent by a wireless

radio connection to the ExaBot.

A Mobile Mini-Robot Architecture ...

45

Programming In order to program the PIC18F4680 to execute different

algorithms, we exported its programming interface, as well as the program-

ming interface of the other PICs. There are several cross-compilers, tool-

chains, IDEs and programmers to program these microcontrollers. This may

prove very useful not only to run different tasks but also if changes to the base

control of the sensors or motors are needed, or if new sensors are added (see

section 3.3). Another option for high level control is to program the desired

algorithm in an external PC and use the RS232 bus to send commands to the

ExaBot.

2.4 Power

To power the complete robot, rechargeable Ion-Lithium batteries are used.

Each cell has between 4.2 and 3.6 V, and delivers 1.9 Amp/hour. The battery

has 3 cells in series that are regulated to deliver the 7.2 V needed to power the

motors. In addition, 2 cells in series are regulated to 5V to power all the logic

and sensors, including the PC104, PICs, telemeters, sonar, etc.

3 Sensors

A requirement of this development is that the robot may be used for a wide

variety of applications. Hence, we included different types of sensors in its

design. The ExaBot has bumpers, linefollowings, infrared telemeters, a sonar,

battery sensors and a webcam to capture images. It also has an external port

that may be used to connect several other sensors. Finally, the quadrature

encoders and motor current consumption sensors prove very useful for the

control of the motors. Most of these sensors can be dismounted and rear-

ranged, turned off or even taken out of the robot if needed for particular tasks.

In this way, we have a robot with the capability to control a wide variety of

sensors, but that may use only a few for a particular task.

A PIC18F4680 [5] is used to control the sonar, linefollowing, bumpers and

the ring of telemeters. The webcam is directly controlled from the embedded

PC104. The encoders and motor current consumption sensors are used for

motor control as explained in section 4.

In this section we will describe the sensors available in the ExaBot and

most hardware related issues. The software architecture to control all these

sensors is described in section 5.1.

3.1 Distance measurement

The distance measuring sensors are infrared telemeters and a sonar. The

infrared telemeters are short range punctual sensors (the range varies depend-

Pedre S., Cristóforis P., Caccavelli J., Stoliar A.

46

ing of the model, but is less than a meter). They are relatively low cost. Sonars

are non-punctual, long range (several meters) sensors, and more expensive.

We chose to install a sonar in the front of the robot in order to achieve a long

range vision in the front, and a ring of 8 telemeters to sense the environment

surrounding the robot in a short range. In this manner, the robot has both types

of sensors but it is still low cost. Also, telemeters are faster than sonars.

Ring of telemeters The chosen telemeters are the Sharp GP2Y0A21YK0F

[6] with a sensing range of 5 to 80 cm. The telemeter returns a voltage value

proportional to the distance of the nearest object. This is a non-linear, analogi-

cal function. In order to digitalize this value, we use the A/D converter of the

PIC18F4680. We also characterized the function before mounting the teleme-

ters on the robot and thus built a linearizing array that given the digitalized

voltage returns the lineal distance to the nearest object. Each telemeter gives

a new value every 38 ± 10 ms, and has an unpredictable zone between mea-

surements.

Sonar The chosen sonar is the Devanatech SRF05 [7] that has a sensing

range of 10 mm to 4 meters. There are sonars with larger sensing ranges (like

SRF10) but are considerably more expensive, which determined the choice.

The sonar works in the frequency of 40 KHz (wavelength 8,65 mm). It can be

triggered every 50 ms, giving a maximum of 20 measurements per second.

The sonar's output is a digital pulse whose duration is linearly proportional to

the distance to the closest object. Therefore, to control it we use a CCP (Cap-

ture/Compare/PWM) module, and use a timer to measure the length of the

sonar's pulse, thus having the distance to the closest object.

3.2 Other sensors

Linefollowing and bumpers The ExaBot has two line-following sensors

and two contact sensors (bumpers). This sensors are connected to interrupt-

on-change pins of the PIC18F4680. In this way, whenever a bumper is

pressed or a line found, as the pin changes value, the interrupt is generated.

Battery sensors The ExaBot has two battery sensors, one for the motor

power and one for the logic power. In this manner, it can be detected when the

battery is running too low to continue with experiments.

The battery sensors sense the voltage provided by the batteries before the

voltage regulators in order to sense its fall due to use. The idea is to enter that

analog voltage into a PIC, digitizes it and then see how the battery is doing.

As the voltage provided by the batteries is much more than the 5V the PIC

needs as maximum input in its pins, we implemented a voltage divider in or-

der to map those voltages to the 0-5V range. The battery control is actually

implemented in the PICs used to control the motors, as the A/D converter of

the PIC18F4680 is busy with the telemeters. Each motor PIC senses one of

the batteries.

A Mobile Mini-Robot Architecture ...

47

Webcam The ExaBot has a webcam that allows to capture images of the

environment. The webcam is directly controlled from the embedded PC104 as

shown in figure 1, using a driver of the Linux kernel 2.24 that runs in the em-

bedded PC.

3.3 Sensor expansion ports

In the control of the telemeters, sonar, line-following and bumpers, and all

the needed electronics to make the PIC18F4680 a possible master of the SPI

bus (SPI chip select pins plus the control of the RS232 bus), all the 40 pins of

that PIC are used up. However, the two PICs that control the motors have

several pins that are not used. We planned the pins needed for motor control

in those PICs in order to maximize the possible applications of exported pins .

In this way, the ExaBot has two expansion ports, each one exporting the

following:

- one analog pin (to connect any analog sensor like infrared telemeters, light

sensors, etc).

- one CCP pin (Capture/Compare/PWM module like the one used to control

the sonar).

- a PWM pair (Pulse Width Modulation module, like the ones used to con-

trol the motors).

- the INT0 pin (external interruption pin, in order to program an external

interruption).

- GND and Vcc.

These expansion ports may prove a very powerful tool to add sensors and

functionality to the ExaBot. The programming needed to control these added

sensors may be done with the exported programming ports for each PIC18F2431.

4 Motors

The ExaBot has two direct current motors of 7.2 V and 2 Amp/hour and

built-in quadrature encoders that come in the Traxster kit. We used

a PIC18F2431 [8] to control each motor and corresponding encoder.

To control the motor we used the PWM (Pulse Width Modulation) hard-

ware module in the PIC connected with a L298 driver [9]. In this manner,

depending on the length of the generated pulse, the motor goes faster or slow-

er. The length of the needed pulse (that is, the duty) is calculated by a PID

(Proportional Integrative Derivative) control algorithm using the required

velocity, and the information of the encoders. This closed loop control algo-

rithm is better described in the software architecture section 5.2.

To sense the encoders, the Quadrature Encoder hardware module of the

PIC is used.

Pedre S., Cristóforis P., Caccavelli J., Stoliar A.

48

4.1 Current sensor and fault circuit

We implemented a motor current sensor in order to have a control of the

current the motors are actually consuming and in that way implement a load

control, and also a fault circuit.

To sense the current we used a ACS712 IC [10]. This IC is connected be-

tween the L298 driver and the motor, senses the current and outputs a voltage

indicating the current. This voltage is used in two ways. For one, it is an ana-

logical input to the PIC, that is digitalized and used to know how much cur-

rent is consumed. The software for this is further explained in section 5.2.

We also use that voltage to implement the fault circuit in order to override

all PWM output and hence stop the motors if error conditions happen. The

problem arises when a motor is jammed for some reason. In those cases, the

encoder shows the motor is not moving, then the PID makes the PWM give

full power to the motor. In that case, the motor consumes all the available

current from the battery, and if not turned off surely something will be burnt.

To prevent this from happening, the sensed current inputs a LM319 voltage

comparator [11] that is set so a 3 Amp threshold is not surpassed. If that thre-

shold is passed, the Fault pin of the PIC is driven low, and the Fault module

by hardware overrides the PWM output to stop the motor. We also have fuses

in the circuit path from the batteries so if everything fails, the fuse will be

burnt and not the circuit, ICs or motor.

5 Software architecture

In this section we describe the software architecture of the ExaBot, in the

hard ware configuration that includes the PC104. We will describe the soft-

ware in the PC104, in the PIC18F4680 that controls the sensors and in the

PIC18F2431 that controls the motors in three different subsections.

All the software is programmed in a modularized way, making full use of

the interrupt hardware available in the PICs and and the thread software in the

embedded PC. In this manner, we have a modularized, completely timed de-

sign in which all sensing, motor control and communication happen at deter-

mined times. The real time control and perfect timing of sensor data and

commands in robot control is a key issue, since the robot moves in the real

world. If commands or sensing is delayed, or happen at different unknown

intervals, we don't have a way of knowing if the conditions have already

changed and hence the commands are no longer useful or may even be harm-

ful. That's why we put much effort in a correct software architecture design

and careful programming, and in this way, we manage to control all the hard-

ware described in the previous section.

A Mobile Mini-Robot Architecture ...

49

5.1 Software in the PIC18F4680

As we have already explained, the PIC18F4680 controls most of the sen-

sors: the sonar, the ring of infrared red telemeters (IRs), the line-following and

the bumpers. All these sensors may be turned on or off by the high level algo-

rithm through software commands. In the hardware configuration including

the PC104, this PIC is just an SPI slave.

Fig. 3 shows the modules and interruptions (ISR) of the software architec-

ture of this PIC.

Figure 3. PIC18F4680 Software Architecture

Modules and submodules in the sonar control

- Trigger ISR: This interruption tells when the Sonar must be triggered.

- Trigger Control: This submodule triggers the Sonar, and resets the

needed timer for the next trigger ISR.

- Sonar Pulse ISR: This interruption stores the moment that the sonar pulse

starts and ends, and tells the Sonar Module when the pulse is over.

- Distance Calculation: This submodule calculates the sensed distance us-

ing the information acquired by the Sonar Pulse ISR.

In this way the sonar is triggered and sensed every 50 ms as required by the

sonar's data sheet.

Modules and submodules in the infrared telemeters control As the

PIC18F4680 has only one A/D converter, we implemented a round-robin

algorithm to control the ring of telemeters. This algorithm triggers and reads

the telemeters obtaining a new value every 36 ms. It is optimized to trigger

Pedre S., Cristóforis P., Caccavelli J., Stoliar A.

50

only the telemeters that are in use, and only during the minimum time needed

to obtain a correct value. In this manner, power consumption is reduced and

the overall time needed to obtain a value for each telemeter that is actually in

use is the minimum possible. As between measurements the telemeters have

an unpredictable zone, the lapse between the trigger and the start of the A/D

conversion is timed to assure the measurement is correct. The submodules in

this module are:

- Trigger ISR: This interruption tells when the next IR must be triggered,

and the current IR is ready for Analogical/Digital conversion.

- Trigger Control: This submodule triggers the next IR (following the

roundrobin algorithm), and starts the A/D conversion of the telemeter that

is ready.

- AD Conv ISR: This interruption tells when the A/D conversion is done.

- Distance Calculation: This submodule calculates the sensed distance us-

ing the digital value given by the A/D converter, and the pre-calculated li-

nearizing function discussed in section 3.1.

Modules and submodules in the linefollowing and bumper control

- Event ISR: This interruption checks which line following or bumper has

set the interrupt-on-change pin.

- Event Processor: This submodule process the line following or bumper

that has been set.

Submodules of data reception (RX)

- Command Decoder: This submodule decodes the commands received

(for example, which sensors turn on or off).

- SPI Packetizer (Link Layer): This submodule receives each byte from the

Physical Layer and reconstructs the SPI packet.

- SPI Physical Layer: This submodule receives each byte physically.

- SPI ISR: This interruption tells the SPI packetizer when the Physical

Layer has a new byte to be read. It is only triggered when the packet is for

this PIC.

Submodules of data transmission (TX)

- Result Packetizer: This submodule takes the sensor values from each

sensor module, and constructs the packets that will be sent to the PC104. It

knows which sensors are on and sends only their data, and the correspond-

ing control bytes for the PC104 to understand.

- SPI Packetizer (Link Layer): This submodule constructs the packets for

SPI communication.

- SPI Physical Layer: This submodule sends each byte physically.

- SPI ISR: This interruption tells the SPI packetizer when the Physical

Layer is ready to receive a new byte to be sent. It is the same interrupt for

transmission and reception since in the SPI protocol, whenever a byte is

sent another one is received.

A Mobile Mini-Robot Architecture ...

51

5.2 Software in both PIC18F2431

As we have already explained, each PIC18F2431 controls a motor, and the

battery sensor. Fig. 4 shows the modules and interruptions (ISR) of the soft-

ware architecture of this PIC.

Figure 4. PIC18F2431 Software Architecture

Modules and submodules in the motor control

- Motor Control ISR: This interruption tells when every submodule of the

motor control must be executed, and thus the control of the motor is done.

- Acceleration Profile: This submodule executes an acceleration profile.

- Velocity Control: This submodule does the velocity control of the motor.

It implements a PID - Proportional Integrative Derivative control. This is

a closed loop control that uses the information of the encoders given by the

Quadrature Decoder submodule, and calculates the length of the duty and

the direction of the motor that is the information needed for the PWM

submodule to control the motor driver.

- PWM Control: It controls the PWM hardware module of the PIC that

produces the necessary output to control the motor driver. All the needed

variables to obtain the calculated velocity are set by the PID submodule.

- Quadrature Decoder: it controls the quadrature encoders and provides

their value for the PID submodule to calculate.

- Load Control: it controls the power consumption of the motors in order to

check their load. If its too high, it overrides the PID directives to the PWM

submodule in order to decrease the duty, and therefore decrease the mo-

tor's power consumption.

Pedre S., Cristóforis P., Caccavelli J., Stoliar A.

52

- Fault Control: As explained in section 4, if the motor passes a 3 Amp

power consumption threshold, the fault logic by hardware overrides the

PWM out-put stopping the motors. The software fault control submodule

checks if this condition has happened and informs it to take the necessary

measures.

All the control cycle of the motor is perfectly timed and occurs at a 125 Hz

frequency (that is, 125 times per second).

Modules in the ADC multiplexer control and battery sensor As ex-

plained in sections 3 and 4, the motor current needed for the load control and

the battery are both sensed using an analogical input and the A/D converter of

the PIC18F2431. Since this PIC has only one ADC, a multiplexer control

must be done in order to sense both values. In this case, there is no need for

triggers as in the telemeters control explained in 3.1 because both sensors are

in work all the time (they are hardware implemented sensors). The modules

and submodules associated with this control are:

- ADC ISR: it tells the ADC Multiplexer control when to sense the follow-

ing sensor.

- ADC Multiplexer Control: it is in charge of multiplexing the battery and

the current sensors for A/D conversion. The current sensor converted value

is then used by the load control, and the battery sensor by the battery level

calculation.

- Battery Level Calculation: using the digital converted value it calculates

the battery level.

Modules and submodules in the communication control The RX and

TX communication is done with the same modules and submodules that in the

PIC18F4680. The only difference is in the Command Decoder and the Result

Packetizer submodules, since the commands to the motors differ from those to

the sensors, and the resulting feedback also differs.

5.3 Software in the PC104

The PC104 is the master of the SPI communication, controls the commu-

nication with an external PC and the webcam. Fig. 5 shows the modules and

interruptions of the software architecture.

Modules and submodules in the SPI communications control (RX and

TX) The structure for the communications (reception and transmission) fol-

low the OSI model (Open System Interconnection Reference Model), result-

ing in a layered network protocol. Our implementation in the PC104 has ap-

plication, net, link and physical layers. In the PICs the communications is also

implemented following the OSI model, but because they are always slaves it

only has application, link and physical layers.

A Mobile Mini-Robot Architecture ...

53

- Sensor Info Decoder: This submodules decodes the sensor information

received for the main application to use. This information is read from the

buffers in the net layer. This is the application layer for the RX OSI stack.

- Command Encoder: This submodules takes the commands issued by the

main application and forms the protocol packets to be sent to the PICs. It

also puts them in the correct buffers in the net layer. This is the application

layer for the TX OSI stack.

Figure 5. PC104 Software Architecture

- Net submodule: This submodule is in charge of the network, managing

the reception and sending of packets to the three slaves. For each slave it

stores two buffers: one for received packets and another one for packets

that need to be sent.

 Dispatching Routine we implemented a round-robin dispatching routine

that runs every time the network dispatcher ISR tells it to. This routine

knows which was the last slave it sent commands to and copies the re-

ceived packet for that slave from the link buffer to the slave's received

buffer in the net layer. Then it sees if there's anything to send to the

next slave: if there is, it sends it and returns. If there isn't, it checks the

next slave and so on until it either finds something to send or checks

that there is nothing to send to any slave.

 The RX submodule exports several functions to get packets from the re-

ception buffers.

 The TX submodule exports several functions to put packets in the send-

ing buffers.

Pedre S., Cristóforis P., Caccavelli J., Stoliar A.

54

- Net Dispatcher ISR this interruption wakes up the network dispatcher

routine 100 times per second, making the SPI communication between the

embedded PC and the PICs perfectly timed.

- Link submodule: The TX submodule is in charge of constructing the SPI

packets to be sent and put them in the physical layer buffer. The RX sub-

module is in charge of forming the SPI packets from the received bytes in

the physical layer, getting them ready for the Net layer to get.

- SPI Physical submodule: The Physical submodule manages the hardware

module that sends and receives SPI bytes. It also configures and manages

the DIO (Digital Input Output) port pins of the embedded PC in the needed

way for the SPI to work.

In this way, the SPI communication with the PIC is perfectly timed, sending

and receiving 33 packets per second to each slave.

External communication We used the UDP (User Datagram Protocol) to

communicate with an External PC. We found this protocol much more suita-

ble than TCP for control from an external PC mainly because the UDP proto-

col sends packets as they are received, while the TCP protocol buffers packets

until it has enough information to send. As we have already discussed, in ro-

bot control the timing of the commands and the return information is vital.

That's why all our design stresses the importance of having perfectly timed

sensing, control, communication. For robot control, receiving all the com-

mands together and late as would happen with a TCP buffered connection is

far worse than eventually loosing some command because the UDP connec-

tion doesn't guarantee packet delivery. If the robot receives ten commands

together, it will execute them all but in a late moment when the environment

conditions may have already changed, making those commands useless or

worse. That's why we implemented an UDP connection. The implemented

submodules are:

- UDP Receive is in charge of receiving the UDP packets from the external

PC.

- UDP Send is in charge of sending the UDP packets to the external PC.

Main application The main application is the piece of software that unites

all the previous pieces, and executes the programmed algorithm. It interprets

the received sensor's data and webcam images (if running) and sends the rele-

vant information to the external PC by means of the UDP Send submodule. It

also receives commands from the external PC by the UDP Receive submo-

dule, executes what is ordered and sends the necessary commands to the PICs

using the SPI TX module.

Process programming In order for all these modules to work in a timely

manner, we took a process programming approach. Currently, there is are four

child processes running in the embedded PC, in order to perform both com-

munication protocols in a timely fashion (UDP and SPI), and also run the

main application:

A Mobile Mini-Robot Architecture ...

55

- UDP Receive process is always listening in the socket to see if the exter-

nal PC sends something. Evidently, if we didn't program this as a separate

process, all that our program would do is listen to this socket. When this

process receives something, it copies the data to a shared memory location

that the main application can read.

- UDP Send process is in charge of sending UDP packets. It reads the

needed data from a shared memory location that the main application can

write.

- SPI Net control process as we have already explained, the net dispatcher

routine runs 100 times per second, and it is launched by an interruption.

Therefore, this SPI network control runs in a separate process. It reads and

writes the data from/to the net layer buffers we already explained. This

shared memory locations are accessible from the application layer of the

OSI stack. The SPI TX and RX communication run in only one process

because both aspects are intimately related in the SPI protocol (that is,

every time a byte is sent, a byte is received and the only way to receive

from a slave is by sending a packet).

- Main application process The main application runs in a separate process

and uses the shared memory locations to communicate with the other

processes, and therefore exchange data with the external PC and the PICs.

6 Results

The main result of this work is the first prototype of the ExaBot: a mobile

mini-robot architecture for research, education and popularization of science.

We have achieved our goal of building a relatively low cost (around usd

600), multi-purpose robot, with a reconfigurable sensor and hardware archi-

tecture. The software architecture and programming mode also ensures a per-

fectly timed control. The PC104 communicates with each PIC 33 times per

second. In the sensor control, each telemeter is sensed every 36 ms, the sonar

every 50 ms, the sensing for the line-following and bumpers happen every

time they have a change. Finally, the control cycle of the motor is executed

125 times per second.

Pedre S., Cristóforis P., Caccavelli J., Stoliar A.

56

Main characteristics

- Dual-motor mobile chasis, 229 mm length

x 203 mm wide x 76 mm height.
- Reconfigurable hardware architecture,

Reconfigurable control architecture.

- Interrupt based software architecture,
completely timed.

- Sensing capabilities: Ring of 8 telemeters

(range 50 mm to 80 cm), Sonar (range 10
mm to 4 meters), 2 linefollowing, 2 con-

tact sensors, color webcam 640x480,

wheel encoders.
- Ion Lithium Battery (2.5 - 4 hours)

- Embedded PC with a 200 Mhz ARM9
CPU, 32 MB SDRAM, 32 MB on-board

flash drive, 2 USB ports, 2 serial ports, 1

Ethernet port and wi-fi. Linux 2.4 sup-port
(hope to upgrade to 2.6)

- Open Source design with full access to

source code and schematics.
- Fully programmable for autonomous

operation.

- Wireless remote control up to 100m in
doors (line of sight)

Figure 6. ExaBot with 3 infrared telemeters and webam mounted

The applications for which the ExaBot is designed may be divided in three

areas.

- Research: autonomous robots, robot learning (reinforcement learning,

neural networks, etc), multi-robots systems, collective behaviors, sensors

fusion, vision based navigation, among others.

- Education: it can be used in several undergraduate courses such as Robot-

ics Vision, Machine Learning, Neural Networks among others.

- Popularization of science: it can be used in robotics workshops that include

sensing and motors (for example Braitenberg vehicles), robots competi-

tions (for example line tracing, sumo, etc), among others.

The ExaBot has already been successfully used in each one of those areas.

In the next subsections we show an example of it's use in each area.

6.1 Research

The ExaBot is being used as a platform to develop a navigation technique

in unknown environments by members of our laboratory. The problem was

divided in three parts: obstacle avoidance, map construction and continous

localization of the robot in that map. The aim is to find a robust solution in

each of these problems that doesn't require a complex sensing system. For that

reason, the ExaBot was configured to use only a ring of six telemeters, and the

encoder's information.

A Mobile Mini-Robot Architecture ...

57

For obstacle avoidance, a multilayer perceptron neural network was used.

It has 6 input neurons (one for each sensor), 3 output neurons (one for each

possible direction: left, right, forward) and a hidden layer with 3 neurons. The

network was trained off-line using a training set composed of sensor values

from the environment, and the correct action expected in that situation.

For map construction, a topological graph was used where each node

represents a free area, and each edge the spatial connectivity between those

areas. Each node has information about its approximate location in space.

Every time the robot finds a new area in the environment, it creates a new

node. Once the complete map of the environment is created and the robot is

localized, the navigation between one point and another is decided by a short-

est path graph algorithm (for example, the well known Dijkstra algorithm).

For the self localization problem, the robot has odometry information pro-

vided by the encoders. This information is not completely right, since odome-

try error builds up in time. It also has the map built to the moment with an

approximation to where each node is really located, and the telemeter's infor-

mation. The problem is that the approximated location is also derived from

odometry and therefore error prone. To solve this problem, it is necessary to

integrate the imprecise information from all those sources and thus obtain an

estimator for the robot's localization and the nodes in the map. This is done

with the application of a Kalman filter.

This is an ongoing work, where experiments are still being carried on and

will be published in an specific paper.

6.2 Education

The ExaBot was successfully used in two undergraduate courses of our

Computer Science Department (Departamento de Computación, Facultad de

Ciencias Exactas y Naturales, UBA). In an introductory course to Computer

Architectures, the students were introduced to microcontroller architecture

and programming using the ExaBot as a platform. We showed the program-

ming of the ExaBot's microcontrollers to control sensors and motors. In

a Neural Network course the ExaBot was used to experience with different

neural networks that allowed the robot to avoid obstacles.

6.3 Popularization of science

During 2009 we successfully used the ExaBot in workshops for high

school students, particularly in a nine week workshop organized as a part of

the popularization of science programs of the FCEyN, UBA. In this work-

shop, we taught the basic concepts of Behavior Based robotics and the Brai-

tenberg model as a technique for programming robots. Following this model,

Pedre S., Cristóforis P., Caccavelli J., Stoliar A.

58

students were able to program different behaviors, first in a simulator and then

in the ExaBot. Those behaviors were presented as a way to solve problems

using robots, starting from some premises, proposing hypothesis and then

proving (or disproving) them in experiments comparing the expected results

with the real ones. To close the workshop, students prepared scientific posters

with their experiments and results that were presented together with the post-

ers of other workshops. In this manner, we could corroborate the use of the

ExaBot as a platform for Educational Robotics activities.

7 Conclusions and ongoing work

In this work we presented a new mobile mini-robot, the ExaBot, a robot

for research, education and popularization of science. The design follows the

premise that the robot must be usable to pursue very different tasks, must be

reconfigurable and relatively low cost compared to commercially available

robots with similar goals.

The hardware architecture is reconfigurable to include enough processing

power to allow the on-board execution of intelligence algorithms or to pursue

simpler algorithms without the embedded PC, reducing the robot's cost and

power consumption. It has a wide variety of sensors that can be reconfigured,

even taken off, and it also has expansion ports that may be used to add new

sensors. All the programming ports are exported. The robot may be pro-

grammed and controlled in three levels: from an external PC, in the embedded

PC or from the sensor PIC. The software architecture is specially designed in

a modularized way, making full use of hardware interruptions and software

processes to have a perfectly timed control of the robot. These characteristics

make of the ExaBot a very malleable robot, fulfilling its goal to serve for re-

search, education and popularization of science tasks.

There are several additional works that members of our laboratory are un-

dertaking, specially the development of specific software for these robots.

As one of the applications for the ExaBot is to use it in workshops and po-

pularization of science activities with high school students, the development

of a user friendly interface that allows the programming of the robots in

a graphical and simple manner is much desired. Our group is developing such

an interface to program the ExaBot by defining basic behaviors that are inte-

grated to form more complex behaviors, by means of a data flow program-

ming approach rather than a control flow one.

Another additional development of importance is a 3D Simulator. To face

research tasks a controlled simulated environment is a must: an environment

where the researcher may prove his/her algorithms before real world expe-

riences is needed.

A Mobile Mini-Robot Architecture ...

59

References

1. Khepera, Khepera II and Khepera III, K-Team, http://www.k-team.com

2. Mindstorms, Lego, http://mindstorms.lego.com

3. Traxster Kit, http://www.roboticsconnection.com/p-15-traxster-robot-kit.aspx.

4. TS-7250 datasheet, http://www.embeddedarm.com/ epc/ts7250-spec-h.html.

5. PIC18F4680 datasheet, http://ww1.microchip.com/downloads/en/DeviceDoc/

39625c.pdf

6. Sharp GP2Y0A21YK0F Distance Measuring Sensor datasheet,

http://www.pololu.com/_le/ download/gp2y0a21yk0f.pdf?_le id=0J85

7. Devanatech SRF05 Ultrasonic Ranger documentation, http://www.robot-

electronics.co.uk/htm/ srf05tech.htm.

8. PIC18F2431 datasheet, http://www.datasheetcatalog.org/datasheet/microchip/

39616b.pdf

9. L298 IC driver datasheet, http://www.st.com/stonline/books/pdf/docs/1773.pdf

10. ACS712 sensor current 5A 5V datasheet, http://www.allegromicro.com/en/

Products/Part Numbers/0712/0712.pdf

11. LM319 IC comparator, http://www.fairchildsemi.com/ds/LM/LM319.pdf

