PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the climatic variations in the wind waves parameters on the alongshore sediment transport

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this work was to analyze the influence of climatic variability of wind waves and swell parameters in the coastal zone on the sediment transport and to assess the contribution of the swell to the formation of alongshore fluxes. The object of research is the Anapa bay-bar (the Black Sea). Mathematical modeling has shown that in the Anapa bay-bar area the average annual wind waves and swell powers have significant interannual variability. For the period from 1979 to 2017, in the southern part of the bay-bar, there was a statistically significant decrease in the share of swell in the alongshore transport, directed from NW to SE, in the central part – an increase in the contribution of swell to the total sediment flow from SE to NW, in the northern part – probable increase in flows to NW and decrease – to SE. Such a dynamic is consistent, in general, with experimental observations of the processes of erosion and accumulation of beach-forming material along the Anapa bay-bar coastline. A separate description of the bottom sediment fluxes under the influence of wind waves and swell made it possible to explain the fluctuations of the coastline over a climatic period.
Czasopismo
Rocznik
Strony
190--199
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
  • Shirshov Institute of Oceanology RAS, Moscow, Russia
  • Shirshov Institute of Oceanology RAS, Moscow, Russia
Bibliografia
  • [1] Almar, R., Kestenare, E., Reyns, J., Jouanno, J., Anthony, E. J., Laibi, R., Hemer, M., Du Penhoat, Y., Ranasinghe, R., 2015. Response of the Bight of Benin (Gulf of Guinea, West Africa) coastline to anthropogenic and natural forcing, Part1: Wave climate variability and impacts on the longshore sediment transport. Cont. Shelf Res. 110, 48-59, https://doi.org/10.1016/j.csr.2015.09.020.
  • [2] Aziz, J. J., Ling, M., Rifai, H. S., Newell, C. J., Gonzales, J. R., 2003. MAROS: A Decision Support System for Optimizing Monitoring Plans. Ground Water 41 (3), 355-367, https://doi.org/10.1111/j.1745-6584.2003.tb02605.x.
  • [3] Bertin, X., Castelle, B., Chaumillon, E., Butel, R., Quique, R., 2008. Longshore transport estimation and inter-annual variability at a high-energy dissipative beach: St. Trojan beach, SW Oleron Island, France. Cont. Shelf Res. 28 (10-11), 1316-1332, https://doi.org/10.1016/j.csr.2008.03.005.
  • [4] Boyle, G., 2004. Renewable Energy: Power for a Sustainable Future, 2nd edn Oxford Univ. Press, Oxford 566 pp.
  • [5] Chowdhury, P., Behera, M. R., 2017. Effect of long-term wave climate variability on longshore sediment transport along regional coastlines. Prog. Oceanogr. 156, 145-153, https://doi.org/10.1016/j.pocean.2017.06.001.
  • [6] DHI Water & Environment, 2007. MIKE 21, Spectral Wave Module.
  • [7] Divinsky, B. V., Kosyan, R. D., 2017. Spatiotemporal variability of the Black Sea wave climate in the last 37 years. Cont. Shelf Res. 136, 1-19, https://doi.org/10.1016/j.csr.2017.01.008.
  • [8] Divinsky, B., Kosyan, R., 2018. Parameters of wind seas and swell in the Black Sea based on numerical modeling. Oceanologia 60 (3), 277-287, https://doi.org/10.1016/j.oceano.2017.11.006.
  • [9] Jonsson, J. G., 1966. On the existence of universal velocity distributions in an oscillatory, turbulent boundary layer. Coast. Eng. Lab/Hydraul. Lab., Tech. Univ., Denmark, 2-10 Report No. 12.
  • [10] Kosyan, A. R., Divinsky, B. V., 2019. Chamelea gallina in the coastal waters of the Anapa bay bar (the Black Sea) as a carbonate sediment producer. Oceanologia 61 (4), 471-483, https://doi.org/10.1016/j.oceano.2019.04.003.
  • [11] Kosyan, R., 1985. Vertical distribution of suspended sediment concentrations seawards of the breaking zone. Coast. Eng. 9, 171-187.
  • [12] Kosyan, R. D., Divinskiy, B. V., Krylenko, V. V., Krylenko, M. V., Kuklev, S. B., Kosyan, A. R., 2011. The forecast of Anapa bay-bar coast evolution and sand body thickness change. In: Coastal Engineering Practice - Proceedings of the 2011 Conference on Coastal Engineering Practice. San Diego, CA. 21-24.08.2011, 42-55.
  • [13] Krylenko, V. V., Kosyan, R. D., Kochergin, A. D., 2011. Regularities of the formation of the granulometric composition of the bottom and beach deposits of the Anapa bay-bar. Oceanology 51 (6), 1061-1071, https://doi.org/10.1134/S0001437011060099.
  • [14] Krylenko, V. V., 2015. Seashore dynamics of the Anapa bay-bar. Oceanology 55 (5), 742-749, https://doi.org/10.1134/S0001437015050070.
  • [15] Larson, M., Hoan, L. X., Hanson, H., 2009. Direct formula to compute wave height and angle at incipient breaking. J. Waterway, Port, Coast, Ocean Eng. 136 (2), 1190-122, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000030.
  • [16] Longuet-Higgins, M. S., 1970. Alongshore currents generated by obliquely incident sea waves. J. Geophys. Res. 75, 6788-6801.
  • [17] Walton, T., 2002. Coastal Engineering Manual, Part III, Coastal Sediment Processes, Chapter III-6, Eng. Manual 1110-2-1100. In: U.S. Army Corps of Engineers. Washington, DC, 72 pp.
  • [18] Zou, S., Dalrymple, R., Asce, F., Rogers, B., 2005. Smoothed particle hydrodynamics simulation on sediment suspension under breaking waves. Ocean Waves Measurement and Analysis, Fifth Int. In: Symposium Waves - 2005, Madrid, Spain, 186-192.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a35c65c-fb80-4833-ab34-6f65036a8379
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.