PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study on the optimization of superplasticizer and water-to-binder ratio for enhancing 3D printable concrete with marble powder waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study focuses on developing a 3D-printable concrete mix by optimizing the superplasticizer dose and water-to-binder ratio while substituting 10% of marble powder waste as a cement replacement. The step-by-step methodology for achieving the optimal 3D printable material mix is outlined, encompassing the mix proportions, material fineness, and the procedures involved. Experimental investigations were carried out using a 3D Printer, including tests for flow, extrudability, and buildability to refine the printable mix and compressive strength tests were carried out. The optimal mix was achieved by adjusting the water-to-binder ratio, and superplasticizer dosage. The results show that a printable mix with 0.35% Superplasticizer dosage, 0.35 water-to-binder ratio, and 10% marble powder waste as cement replacement exhibits superior printing quality.
Twórcy
  • Department of Structural and Geotechnical Engineering, School of Civil Engineering, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India
autor
  • Department of Structural and Geotechnical Engineering, School of Civil Engineering, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India
Bibliografia
  • 1. Arunothayan A.R., Nematollahi B., Ranade R., Hau S., Sanjayan J. Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction, Constr Build Mater, 2020, 257, 119546. https://doi.org/10.1016/j.conbuildmat.2020.119546.
  • 2. Buswell R.A., Leal de Silva W.R., Jones S.Z., Dirrenberger J. 3D printing using concrete extrusion: A roadmap for research, Cem Concr Res, 2018, 112, 37–49. https://doi.org/10.1016/j.cemconres.2018.05.006.
  • 3. Rahul A.V., Santhanam M., Meena H., Ghani Z. 3D printable concrete: Mixture design and test methods, Cem Concr Compos, 2019, 97, 13–23. https://doi.org/10.1016/j.cemconcomp.2018.12.014.
  • 4. Xiao J. et al. 3D recycled mortar printing: System development, process design, material properties and on-site printing, Journal of Building Engineering, 2020, 32, 101779. https://doi.org/10.1016/j.jobe.2020.101779.
  • 5. Ambily P.S., Kaliyavaradhan S.K., Sebastian S., Shekar D. Mixing approach for 3D printable concrete: Method of addition and optimization of superplasticizer dosage, Magazine of Concrete Research, 2023. https://doi.org/10.1680/jmacr.23.00165.
  • 6. Ambily P.S., Kumar K.S., Neeraja R. Top challenges to widespread 3D concrete printing (3DCP) adoption – A review, European Journal of Environmental and Civil Engineering, 2023, 0(0), 1–29. https://doi.org/10.1080/19648189.2023.2213294.
  • 7. Le T.T., Austin S.A., Lim S., Buswell R.A., Gibb A.G.F., Thorpe T. Mix design and fresh properties for high-performance printing concrete, Materials and Structures/Materiaux et Constructions, 2012, 45(8), 1221–1232. https://doi.org/10.1617/s11527-012-9828-z.
  • 8. Giridhar G., Prem P.R., Kumar S. Development of concrete mixes for 3D printing using simple tools and techniques, Sadhana - Academy Proceedings in Engineering Sciences, 2023, 48(1). https://doi.org/10.1007/s12046-022-02069-w.
  • 9. Das A., Reiter L., Mantellato S., Flatt R.J. Early-age rheology and hydration control of ternary binders for 3D printing applications, Cem Concr Res, 2022, 162, 107004. https://doi.org/10.1016/j.cemconres.2022.107004.
  • 10. Kaliyavaradhan S.K., Ambily P.S., Prem P.R., Ghodke S.B. Test methods for 3D printable concrete, Autom Constr, 2022, 142, 104529. https://doi.org/10.1016/j.autcon.2022.104529.
  • 11. Tramontin Souza M. et al. Role of chemical admixtures on 3D printed Portland cement: Assessing rheology and buildability, Constr Build Mater, 2022, 314. https://doi.org/10.1016/j.conbuildmat.2021.125666.
  • 12. Ambily P.S., Kaliyavaradhan S.K., Sebastian S., Shekar D. Mixing approach for 3D printable concrete: Method of optimisation of superplasticiser dosage, Magazine of Concrete Research, 2023, 76(11), 574–590. https://doi.org/10.1680/jmacr.23.00165.
  • 13. Zhang C. et al. Mix design concepts for 3D printable concrete: A review, Cem Concr Compos, 2021, 122, 104155. https://doi.org/10.1016/j.cemconcomp.2021.104155.
  • 14. Tay Y.W.D., Qian Y., Tan M.J. Printability region for 3D concrete printing using slump and slump flow test, Compos B Eng, 2019, 174, 106968. https://doi.org/10.1016/j.compositesb.2019.106968.
  • 15. Jayathilakage R., Rajeev P., Sanjayan J. Extrusion rheometer for 3D concrete printing, Cem Concr Compos, 2021, 121, 104075. https://doi.org/10.1016/j.cemconcomp.2021.104075.
  • 16. Panda B., Chandra Paul S., Tan M.J. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material, Mater Lett, 2017, 209, 146–149. https://doi.org/10.1016/j.matlet.2017.07.123.
  • 17. Rahul A.V., Sharma A., Santhanam M. A desorptivity-based approach for the assessment of phase separation during extrusion of cementitious materials, Cem Concr Compos, 2020, 108, 103546. https://doi.org/10.1016/j.cemconcomp.2020.103546.
  • 18. Rahul A.V., Santhanam M., Meena H., Ghani Z. Mechanical characterization of 3D printable concrete, Constr Build Mater, 2019, 227, 116710. https://doi.org/10.1016/j.conbuildmat.2019.116710.
  • 19. Panda B., Lim J.H., Tan M.J. Mechanical properties and deformation behaviour of early age concrete in the context of digital construction, Compos B Eng, 2019, 165, 563–571. https://doi.org/10.1016/j.compositesb.2019.02.040.
  • 20. Panda B., Tan M.J. Rheological behavior of high volume fly ash mixtures containing micro silica for digital construction application, Mater Lett, 2019, 237, 348–351. https://doi.org/10.1016/j.matlet.2018.11.131.
  • 21. Tan M.J., Panda B. Material properties of 3D printable high-volume slag cement, 2018.
  • 22. Dey D., Srinivas D., Panda B., Suraneni P., Sitharam T.G. Use of industrial waste materials for 3D printing of sustainable concrete: A review, J Clean Prod, 2022, 374, 130749. https://doi.org/10.1016/j.jclepro.2022.130749.
  • 23. Santos T., Gonçalves J.P., Andrade H.M.C. Partial replacement of cement with granular marble residue: Effects on the properties of cement pastes and reduction of CO₂ emission, SN Appl Sci, 2020, 2(9), 1–12. https://doi.org/10.1007/s42452-020-03371-0.
  • 24. Vardhan K., Goyal S., Siddique R., Singh M. Mechanical properties and microstructural analysis of cement mortar incorporating marble powder as partial replacement of cement, Constr Build Mater, 2015, 96, 615–621. https://doi.org/10.1016/j.conbuildmat.2015.08.071.
  • 25. Demirel B., Alyamaç K.E. Waste marble powder/dust, in: Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications, 2018, 181–197. https://doi.org/10.1016/B978-0-08-102156-9.00006-7.
  • 26. Kumar V., Singla S., Garg R. Strength and microstructure correlation of binary cement blends in presence of waste marble powder, Mater Today Proc, 2020, 43, 857–862. https://doi.org/10.1016/j.matpr.2020.07.073.
  • 27. Nayak S.K., Satapathy A., Mantry S. Use of waste marble and granite dust in structural applications: A review, Journal of Building Engineering, 2022, 46, 103742. https://doi.org/10.1016/j.jobe.2021.103742.
  • 28. Aliabdo A.A., Abd Elmoaty A.E.M., Auda E.M. Re-use of waste marble dust in the production of cement and concrete, Constr Build Mater, 2014, 50, 28–41. https://doi.org/10.1016/j.conbuildmat.2013.09.005.
  • 29. Tugrul Tunc E. Recycling of marble waste: A review based on strength of concrete containing marble waste, J Environ Manage, 2019, 231, 86–97. https://doi.org/10.1016/j.jenvman.2018.10.034.
  • 30. Kuoribo E., Mahmoud H. Utilisation of waste marble dust in concrete production: A scientometric review and future research directions, J Clean Prod, 2022, 374, 133872. https://doi.org/10.1016/j.jclepro.2022.133872.
  • 31. Rana A., Kalla P., Csetenyi L.J. Sustainable use of marble slurry in concrete, J Clean Prod, 2015, 94, 304–311. https://doi.org/10.1016/j.jclepro.2015.01.053.
  • 32. Ma G., Salman N.M., Wang L., Wang F. A novel additive mortar leveraging internal curing for enhancing interlayer bonding of cementitious composite for 3D printing, Constr Build Mater, 2020, 244. https://doi.org/10.1016/j.conbuildmat.2020.118305.
  • 33. Sahana C.M. et al. 3D printing with stabilized earth: Material development and effect of carbon sequestration on engineering performance, Cem Concr Compos, 2024, 152. https://doi.org/10.1016/j.cemconcomp.2024.105653.
  • 34. Bureau of Indian Standards, IS 269 (2015): Ordinary Portland Cement Specification.
  • 35. ASTM. Standard Test Method for Flow of Hydraulic Cement Mortar: C1437-01, Standard, 2001, 7–8. https://doi.org/10.1520/C1437-20.2.
  • 36. Rahul A.V., Santhanam M., Meena H., Ghani Z. 3D printable concrete: Mixture design and test methods, Cem Concr Compos, 2019, 97, 13–23. https://doi.org/10.1016/j.cemconcomp.2018.12.014.
  • 37. Ambily P.S., Kaliyavaradhan S.K., Sebastian S., Shekar D. Mixing approach for 3D printable concrete: Method of addition and optimization of superplasticizer dosage, Magazine of Concrete Research, 2023. https://doi.org/10.1680/jmacr.23.00165.
  • 38. Bureau of Indian Standards, IS 516 (1959): Method of Tests for Strength of Concrete.
  • 39. Ambily P.S., Rajendran N., Kaliyavaradhan S.K. Mix design, optimization and performance evaluation of extrusion-based 3D printable concrete, Proceedings of Institution of Civil Engineers: Construction Materials, 2023. https://doi.org/10.1680/jcoma.23.00077.
  • 40. Ingle V.V., Kaliyavaradhan S.K., Ambily P.S., Shekar D. 3D printable concrete without chemical admixtures: Fresh and hardened properties, Structural Concrete, 2024, 25(1), 365–378. https://doi.org/10.1002/suco.202300267.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a2ec097-e492-4f84-b826-54db0698cc44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.