PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Re Content on Microstructure and Creep Resistance of Single Crystal Castings Made of Nickel-Based Superalloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work the effect of crystal structure perfection on the creep resistance of single crystal superalloys. The CMSX-4 and CMSX-4®Plus with increased Re content is analyzed. Single crystal rods are made by directional solidification process at the withdrawal rates 3 and 5 mm/min. The evaluation of microstructure and crystal structure perfection are carried out by light microscopy and X-ray diffraction Ω-scan methods. Creep tests are performed according to ASTM E-139-11 standard at the temperature of 982°C. Mathematical models for the creep resistance of the models are developed for both investigated superalloys. The influence of the crystal structure on the the investigated superalloys are built and the steady state creep rates are determined. Creep strength of both superalloys are compared. The results show that the CMSX-4®Plus nickel superalloy exhibits nearly two times higher creep resistance compared to the conventional CMSX-4 one.
Twórcy
  • Department of Materials Science and Research and Development Laboratory for Aerospace Materials, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology
  • Institute of Materials Science, University of Silesia
  • Department of Manufacturing Processes and Production Engineering, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology
  • Department of Materials Science and Research and Development Laboratory for Aerospace Materials, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology
  • Department of Materials Science and Research and Development Laboratory for Aerospace Materials, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology
  • Department of Materials Science and Research and Development Laboratory for Aerospace Materials, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology
  • Department of Manufacturing Techniques and Automation, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology
  • Department of Materials Science and Research and Development Laboratory for Aerospace Materials, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology
  • Department of Materials Science and Research and Development Laboratory for Aerospace Materials, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology
Bibliografia
  • 1. Reed R.C. The Superalloys, fundamentals and applications. Cambridge University Press, 2006.
  • 2. Reed R.C., Matan N., Cox D.C., Rist M.A., Rae C.M.F. Creep of CMSX-4 superalloy single crystals: effects of rafting at high temperature. Acta Materialia 1999; 47(12): 3367-3381.
  • 3. Pollock T.M., Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. Journal of Propulsion and Power 2006; 22(2): 361-374.
  • 4. Miller J.D., Pollock T.M. The effect of processing conditions on heat transfer during directional solidification via the Bridgman and liquid metal cooling processes. Metallurgical and Materials Transactions A 2014; 45: 411-425.
  • 5. Li Y., Liu L., Sun D., Yue Q., Huang T., Gan B., Zhang J., Fu H. Quantitative analysis of withdrawal rate on stray grain formation in the platforms of a Ni-based single crystal dummy blade. Journal of Alloys and Compounds 2019; 773: 432-442.
  • 6. Durand-Charre M. The microstructure of superalloys. Gordon and Breach Science Publishers, 2003.
  • 7. Gancarczyk K., Albrecht R., Berger H., Szeliga D., Gradzik A., Sieniawski J. Determination of crystal orientation by Ω-scan method in nickel-based single crystal turbine blades. Metallurgical and Materials Transactions A 2017; 48: 5200-5205.
  • 8. Bogdanowicz W., Albrecht R., Sieniawski J., Kubiak K., Onyszko A. Correlation between sem and x-ray diffraction imaging of defect structure in single-crystal Ni-based superalloy. Solid State Phenomena 2012; 186: 135-138.
  • 9. Zhang H., Xu Q., Liu B. Numerical simulation and optimization of directional solidification process of single crystal superalloy casting. Materials 2014; 7(3): 1625-1639.
  • 10. Szeliga D., Gancarczyk K., Ziaja W. The control of solidification of Ni-based superalloy single-crystal blade by mold design modification using inner radiation baffle. Advanced Engineering Materials 2018; 20(7): n/a.
  • 11. Li J., Wang Z., Wang Y., Wang J. Phase-field study of competitive dendritic growth of converging grains during directional solidification. Acta Materialia 2012; 60(4): 1478-1493.
  • 12. Das N. Advances in nickel-based cast superalloys. Transactions of the Indian Institute of Metals 2010; 63: 265-274.
  • 13. Sato A., Harada H., Yeh A.C., Kawagishi K., Kobayashi T., Koizumi Y., Zhang J.X.A. 5th generation SC superalloy with balanced high temperature properties and processability. In: Proc. of the 11th International Symposium on Superalloys, Pittsburgh, USA 2008, 131-138.
  • 14. Blavette D., Caron P., Khan T. An atom probe study of some fine scale microstructural feature in nickel base single crystal super alloys. In: Proc. of the 6th International Symposium on Superalloys, Seven Springs, USA 1988, 305-314.
  • 15. Rezaei M., Kermanpur A., Sadeghi F. Effects of withdrawal rate and starter block size on crystal orientation of a single crystal Ni-based superalloy. Journal of Crystal Growth 2018; 485: 19-27.
  • 16. Ma D., Wang F., Wu Q., Bogner S., Bührig-Polaczek A. Innovations in casting techniques for single crystal turbine blades of superalloys. In: Proc. of the 13th International Symposium on Superalloys, Warrendale, USA 2016, 237-246.
  • 17. Yoshitake S., Narayan V., Harada H., Bhadeshia H.K.D.H., Mackay D. Estimation of the γ and γ’ lattice parameters in Nickel-base superalloys using neural network analysis. ISIJ International 1998; 38(5): 495-502.
  • 18. Wahl J.B., Harris K.K. Improved 3rd generation single crystal superalloy CMSX-4 Plus (SLS) – a study of evolutionary alloy development. Cannon-Muskegon Corporation, 2018. [19] Wahl J.B., Harris K.K. CMSX-4 Plus single crystal alloy development, characterization and application development. In Proc. of the 13th International Symposium on Superalloys, Warrendale, USA 2016, 25-33.
  • 19. Gancarczyk K., Zubko M., Hanc-Kuczkowska A., Kościelniak B., Albrecht R., Szeliga D., Motyka M., Ziaja W., Sieniawski J. The effect of withdrawal rate on crystal structure perfection, microstructure and creep resistance of single crystal castings made of CMSX-4 Nickel-based superalloy. Materials 2019; 12(20): n/a.
  • 20. Jaroszewicz J., Matysiak H., Michalski J., Matuszewski K., Kubiak K., Kurzydłowski K. Characterization of single-crystal dendrite structure and porosity in nickel-based superalloys using x-ray micro-computed tomography. Advanced Materials Research 2011; 278: 66-71.
  • 21. Anton D., Giamei A. Porosity distribution and growth during homogenization in single crystals of a nickel-base superalloy. Materials Science and Engineering 1985; 76: 173-180.
  • 22. Long H., Mao S., Liu Y., Zhang Z., Han X. Microstructural and compositional design of Ni-based single crystalline superalloys – a rewiew. Journal of Alloys and Compounds 2018; 743: 203-220.
  • 23. Krawczyk J., Paszkowski R., Bogdanowicz W., Hanc-Kuczkowska A., Sieniawski J., Terlecki B. Defect creation in the root of single-crystalline turbine blades made of Ni-based superalloy. Materials 2019; 12(6): n/a.
  • 24. Johnston J, DiNardo J. Econometric methods (4th ed.). McGraw Hill Higher Education, 1997.
  • 25. Engle R. F. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica,1982; 50(4): 987-1007.
  • 26. Draper N.R., Smith H. Applied regression analysis (3rd ed.). John Wiley & Sons, 1998.
  • 27. Fox J. Applied regression analysis, linear models and related methods. Sage Publications, 1997.
  • 28. Sen A., Srivastava M. Regression analysis - theory, methods, and applications. Springer-Verlag, 1990.
  • 29. Akaike H. A new look at the statistical model identification, IEEE Transactions of Automatic Control 1974; 19(6): 716-723.
  • 30. Giraud C. Introduction to high-dimensional statistics. CRC Press, 2015.
  • 31. Konishi S., Kitagawa G. Information criteria and statistical modeling. Springer-Verlag, 2008.
  • 32. Burnham K.P., Anderson D.R. Model selection and multimodel inference: A practical information-theoretic approach. Springer-Verlag, 2002.
  • 33. Dekking F.M. A modern introduction to probability and statistics: understanding why and how. Springer, 2005.
  • 34. Cox D.R., Hinkley D.V. Theoretical statistics. Chapman & Hall, 1974.
  • 35. Montgomery D.C., Runger G.C., Hubele N.F. Engineering statistics. Wiley, 2011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a25da2c-e0e4-48ee-b3e6-6bc2f5e4ac09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.