PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Formulation of Biochar-Compost and Phosphate Solubilizing Fungi from Oil Palm Empty Fruit Bunch to Improve Growth of Maize in an Ultisol of Central Kalimantan

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The efficiency of phosphorus uptake by plants in an Ultisol soil is very low because most of the soil phosphorus is precipitated by Al and Fe. Oil palm empty fruit bunches can be used as basic materials of biochar and compost, and as sources of isolates of phosphate solubilizing fungi. This study was aimed at elucidating the effect of application of phosphate-solubilizing fungi with biochar and the compost produced from oil palm empty fruit bunches on the growth and yield of maize an Ultisol of Central Kalimantan. This study consisted of two experiments. The first experiment was inoculation of four isolates of phosphate solubilizing fungi isolated from of oil palm empty fruit bunches, i.e. Acremonium (TB1), Aspergillus (TM7), Hymenella (TM1) and Neosartorya (TM8) to 'biocom' media (mixture of biochar and compost generated from oil palm empty fruit bunches) to obtain phosphate-solubilizing fungi that can adapt to the media. In the second experiment, the best results in the first experiment were applied to an Ultisol soil planted with maize. The results showed that the isolates that were best adapted to biocom media were Aspergillus-TB7 with 60:40 proportion (60% biochar + 40% compost) and Neosartorya-TM8 with 70:30 proportions (60% biochar + 40% compost). The use of the first experiment results in the second experiment showed that the application of biocom plus Neosartorya-TM8 (BTM) on an Ultisol soil significantly improved the growth and yield of maize, as well as its the phosphorus uptake and uptake efficiency.
Rocznik
Strony
45--55
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
  • Postgraduate Programme, Faculty of Agriculture, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
  • Faculty of Agriculture, University of Palangka Raya, Jl. Yos Sudarso, Kota Palangka Raya 74874, Central Kalimantan, Indonesia
autor
  • Department of Soil Science, Faculty of Agriculture, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
autor
  • Department of Soil Science, Faculty of Agriculture, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
  • Research Centre for Management of Degraded and Mining Lands, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
Bibliografia
  • 1. Alori E.T., Glick B.R., Babalola O.O. 2017 Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8, 971.
  • 2. Ariani E. 2009. A test of NPK Mutiara fertilizer of 16:16:16 and various types of mulch on yield of pepper plant (Capsicum annum L.). Sagu, 8(1), 5–9 (in Indonesian).
  • 3. Baldock J.A., Smernik R.J. 2002. Chemical composition and bioavailability of thermally altered Pinus resinosa (Red Pine) wood. Organic Geochemistry, 33, 1093–1109.
  • 4. Central Bureau of Statistics. 2015. Statistics of Indonesian Oil Palm 2014. Jakarta (in Indonesian).
  • 5. Chakkaravarthy V.M., Arunachalam R., Vincent S., Paulkumar K., Annadurai G. 2010. Biodegradation of tricalcium phosphate by phosphate solubilizing bacteria. Journal of Biological Sciences, 10(6), 531–535.
  • 6. Chang C.H., Yang S. 2009. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. BioresourceTechnology, 100, 1648–1658.
  • 7. Cheng C.H., Lehmann J., Engelhard M.H. 2007. Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta, 72, 1598–1610.
  • 8. Coutinho F., Yano-Melo A.M., Felix W. 2012. Solubilization of phosphates in vitro by Aspergillus spp. and Penicillium spp. Ecological Engineering, 42, 85–89.
  • 9. Crombie K., Mašek O., Cross A., Sohi S. 2015. Biochar-synergies and trade-offs between soil enhancing properties and C sequestration potential. GCB Bioenergy, 7(5), 1161–1175.
  • 10. Delvasto P., Valverde A., Ballester A., Igual J.M., Muñoz J.A., González F., Blázquez M.L., García C. 2006. Characterization of brushite as a re-crystallization product formed during bacterial solubilization of hydroxyapatite in batch cultures. Soil Biology and Biochemistry, 38, 2645–2654.
  • 11. Dobermann, A. 2007. Nutrient use efficiency. Measurement and management. In: Kraus A., Isherwood K., Heffer P. (Eds.), Fertilizers Best Management Practices. Proc. International fertilizer Industry Association, Brussels, Belgium, 7–9 March 2007, 1–22.
  • 12. Douds Jr D.D., Lee J., Uknalis J., Boateng A.A., Ziegler-Ulsh C. 2014. Pelletized Biochar as a carrier for AM Fungi in the on-farm system of inoculums production in compost and vermiculite mixtures. Compost Science & Utilization, 22, 253–262
  • 13. Duponnois R., Colombet A., Hien V., Thioulouse J. 2005. The mycorrhizal fungus Glomus intraradices and rock phosphate amendment influence plant growth and microbial activity in the rhizosphere of Acacia holosericea. Soil Biology and Biochemistry, 37, 1460–1468.
  • 14. El-Azouni I.M. 2008. Effect of phosphate solubilizing fungi on growth and nutrient uptake of soybean (Glycine max L.) plants. Journal of Applied Sciences Research, 4(6), 592–598.
  • 15. Fitriatin B.N., Yuniarti, A., Turmuktini T., Ruswandi F.K. 2014. The effect of phosphate solubilizing microbe producing growth regulators on soil phosphate, growth and yield of maize and fertilizer effiency on Ultisol. Eurasian Journal of Soil Science, 3(2), 101–107.
  • 16. Goldstein A.H. 1994. Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In Phosphate in Microorganisms: Cellular and Molecular Biology, eds Torriani-Gorini A., Yagil E. and Silver S. ASM Press, Washington, DC.
  • 17. Graber E.R., Harel Y.M., Kolton M., Cytryn E., Silber A., David D.R., Tsechansky L., Borenshtein M., Elad Y. 2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 337, 481–496.
  • 18. Gyaneshwar P., Naresh K.G., Parekh L.J., Poole P.S. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, 245, 83–93.
  • 19. Hadi A., Gafur, A., Udiantoro, Mukhlis. 2014. Design of Pyrolysis Installation of Agricultural Waste in the Framework of Minimization of Greenhouse Gas Emissions from Wetlands. Proc. the 5th SNST of 2014. Faculty of Engineering, Wahid Hasyim University, Semarang. ISBN 978–602–999334–3–7. pp 1–9 (in Indonesian).
  • 20. Hale L., Luth M., Kenney R., Crowley D. 2014. Evaluation of pinewood biochar as a carrier of bacterial strain Enterobacter cloacae UW5 for soil inoculation. Applied Soil Ecology, 84, 192–199.
  • 21. Han X., Boateng A.A, Qi P.X., Lima I.M., Chang J. 2013. Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switch grass and woody biomass in correlation with surface properties. Journal of Environmental Management, 118, 196–204.
  • 22. Ichriani G.I., Nion Y.A., Chotimah H.E.N.C., Jemi R. 2016. Utilization of oil palm empty bunches waste as biochar-microbes for improving availibity of soil nutrients. Journal of Degraded and Mining Lands Management, 3(2), 517–520.
  • 23. Ichriani G.I., Syekhfani, Nuraini Y., Handayanto E. 2017. Solubilization of inorganic phosphate solubilizing fungi isolated from oil palm empty fruit bunches of Central Kalimantan. Bioscience Research, 14(3), 705–712
  • 24. Isgitani M., Kabirun S., Siradz S.A. 2005. The effect of bacterial solvent inoculation of phosphate on the growth of shorgum on various P content of soil. Journal of Soil Science and Environment, 5, 48–54 (in Indonesian).
  • 25. Jain R., Saxena J., Sharma V. 2010. The evaluation of free and encapsulated Aspergillus awamori for phosphate solubilization in fermentation and soilplant system. Applied Soil Ecology, 46, 90–94.
  • 26. Jain R., Saxena J., Sharma V. 2012. Effect of phosphate-solubilizing fungi Aspergillus awamori S29 on mungbean (Vigna radiata cv. RMG 492) growth. Folia Microbiologica, 57, 533–540.
  • 27. Joseph S.D., Camps-Arbestain M., Lin Y., Munroe P., Chia C.H., Hook J., Zwieten L., Kimer S., Cowie A., Singh B.P., Lehmann J., Foidl N., Semrnik R.J., Amonette J.E. 2010. An investigation into the reactions of biochar in soil. Soil Research, 48(7), 501–515.
  • 28. Kang J., Amoozegar A., Hesterberg D., Osmond D.L. 2011. Phosphorus leaching in a sandy soil as affected by organic and incomposted cattle manure. Geoderma, 161, 194–201.
  • 29. Khan M.S., Zaidi A., Wani P.A. 2007. Role of phosphate-solubilizing microorganisms in sustainable agriculture-A review. Agronomy for Sustainable Development, 27, 29–43.
  • 30. Kresnawaty I., Budiani A., Darmono T.W. 2012. Population dinamic of Trichoderma harzianum DT38 on mixture of empty fruit bunches of oil palm (EFBOP) biochar and peat. Menara Perkebunan, 80(1), 17–24 (in Indonesian).
  • 31. Kuppusamy S., Krishnan P.S., Kumutha K., French J., Carlos G.E., Toefield B. 2011. Suitability of UK and Indian source Acacia wood based biochar as a best carrier material for the preparation of Azospirillum inoculum. International Journal of Biotechnology, 4, 582–88.
  • 32. Mao J.D., Johnson, R.L., Lehman, J., Olk D.C., Neves E.G., Thompson M.L., Schmidt-Rohr K. 2012. Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration. Environmental Science and Technology, 46, 9571–9576.
  • 33. Mittal V., Singh O., Nayyar H., Kaur J., Tewari R. 2008. Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biology and Biochemistry, 40, 718–727.
  • 34. Mukome F.N.D., Zhang X., Silva L.C.R., Six J., Parikh. S.J 2013. Use of chemical and physical characteristics to investigate trends in biochar feedstocks. Journal of Agriculture and Food Chemistry, 61, 2196– 2204.
  • 35. Narsian V., Patel H.H. 2000. Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biology and Biochemistry, 32, 559–565.
  • 36. Novak J.M., Busscher W.J., Laird D.L., Ahmedna M., Watts D.W., Niandou M.A.S. 2009. Impact of biochar amendment on fertility of a Southeastern Coastal Plain soil. Soil Science, 174, 105–112.
  • 37. Nurbaity A., Herdiyantoro D., Mulyani O. 2009. The use of organic matter as a carrier of innoculant of arbuscular mycorrhizal fungi. Journal of Biology, Padjadjaran University, 13(1), 17-11 (in Indonesian).
  • 38. Ogbo F.C. 2010. Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi. Bioresource Technology,101, 4120–4124.
  • 39. Osorio N.W., Habte M. 2014. Soil phosphate desorption induced by a phosphate solubilizing fungus. Communications in Soil Science and Plant Analysis, 45(4), 451–460
  • 40. Prasetyo B.H., Suriadikarta D.A. 2006. The characteristics, potential, and technology of Ultisol management for agricultural development in Indonesia. Journal of Agricultural Research and Development, 25(2), 39–47 (in Indonesian).
  • 41. Rebah F.B., Tyagi R.D., Prevost D. 2002. Wastewater sludge as a substrate for growth and carrier for rhizobia, the effect of storage conditions on survival of Sinorhizobium meliloti. Bioresource Technology, 831, 45–51.
  • 42. Rivera-Cruz M.C., Narcía A.T., Ballona G.C., Kohler J., Caravaca F., Roldán A. 2008. Poultry manure and banana waste are effective biofertilizer carriers for promoting plant growth and soil sustainability in banana crops. Soil Biology and Biochemistry, 40, 3092–3095.
  • 43. Rodríguez H., Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319–339.
  • 44. Santi L.P., Goenadi D.H. 2012. Utilization of biochar from oil palm shells as an aggregate feeding microbial material. Buana Sains, 12(1), 7–14 (in Indonesian).
  • 45. Ścisłowska M., Włodarczyk R., Kobyłecki R., Bis Z. 2015. Biochar to improve the quality and productivity of soils. Journal of Ecological Engineering, 16(3), 31–35
  • 46. Senoo K., Keneko M., Taguchi R., Murata J., Santasup C., Tanaka A., Obata H. 2002. Enhanced growth and nodule occupancy of red kidney bean and soybean inoculated with soil aggregate-based inoculant. Soil Science and Plant Nutrition, 48(2), 251–259.
  • 47. Seshachala U., Tallapragada P. 2012. Phosphate solubilizers from the rhizosphere of Piper nigrum L. in Karnataka, India. Chilean Journal of Agricultural Research.72, 397–403.
  • 48. Sharma S.B., Sayyed R.Z., Trivedi M.H., Gobi T.A. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2, 587–600.
  • 49. Šimanský V., Klimaj A. 2017. How does biochar and biochar with nitrogen fertilization influence soil reaction?. Journal of Ecological Engineering, 18(5), 50–54.
  • 50. Somarathne R., Yapa P., Yapa N. 2013. Use of Different Carrier Materials for Culture and Storage of Native Forest Soil Microorganisms. 3rd International Conference on Ecological, Environmental and Biological Sciences (ICEEBS’2013) April 29–30, 2013, Singapore.
  • 51. Spokas K.A., Cantrell K.B., Novak J.M, Archer D.W., Ippolito J.A., Collins H.P., Boateng A.A., Lima I.M., Lamb M.C., McAloon A.J., Lentz R.D., Nichols K.A. 2011. Biochar: a synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality, 41, 973–989.
  • 52. Stephens J.H.G., Rask H.M. 2000. Inoculant production and formulation. Field Crops Research, 65, 249–258.
  • 53. Subagyo H., Suharta N., Siswanto A.B. 2004. Agricultural Soils in Indonesia. p. 21–66. In Adimihardja A., Amien L.I., Agus F., Djaenudin D. (Eds.). Indonesia’s Land Resources and Its Management. Center for Soil and Agroclimate Research and Development, Bogor (in Indonesian).
  • 54. Sukartono, Utomo W.H., Kusuma, Z., Nugroho W.H. 2011. Soil fertility status, nutrient uptake, and maize (Zea mays L.) yield following biochar and cattle manure application on sandy soil of Lombok, Indonesia. Journal of Tropical Agriculture, 49(1–2), 47–52.
  • 55. Sundara B., Natarajan V., Hari K. 2002. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Research, 77, 43–49.
  • 56. Uzoma K.C., Inoue M., Andry H., Fujimaki H., Zahoor A., Nishihara E. 2011. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management. Wiley Online Library, USA.
  • 57. Warnock D.D., Lehmann J., Kuyper T.W., Rillig M.C. 2007. Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant and Soil, 300, 9–20.
  • 58. Widowati, Utomo W.H., Soehono L.A., Guritno B. 2011. Effect of biochar on the release and loss of nitrogen from urea fertilization. Journal of Agriculture and Food Technology, 1(7),127–132
  • 59. Zhao K., Penttinen P., Zhang X., Ao X., Liu M., Yu X., Chen Q. 2014. Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiological Research, 169,76–82.
  • 60. Zhu H.J., Sun L.F., Zhang Y.F., Zhang X.L., Qiao J.J. 2012. Conversion of spent mushroom substrate to biofertilizer using a stress-tolerant phosphatesolubilizing Pichia farinose FL7. Bioresource Technology, 11, 410–416.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a24e281-d844-4944-be79-7b42eb79e3d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.