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Abstract. The theorem of the local existence, uniqueness and estimates of solutions in
Holder spaces for some nonlinear differential evolutionary system with initial conditions is
formulated and proved. This system is composed of one partial hyperbolic second-order
equation and an ordinary subsystem with a parameter. In the proof of the theorem we
use the Banach fixed-point theorem, the Arzeli-Ascola lemma and the integral form of the
differential problem.
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1. INTRODUCTION
Let functions f : [0,T] x R**" — R, g = (g1,...,9n) : [0,T] x R?t" — R",

ug,u1 : R = R, vg = (vo1,-..,vm) : R = R™ and a constant ¢ > 0 be given. Consider
a nonlinear second-order partial differential system of (1 4+ n) equations of the form

{utt—um—kcut:f(t,a:,u,v), (t,z) €[0,7] x R, (1.1)

'Ut:g(t,I,U7U)7 (t,z)G[O,T]XR
with the initial conditions
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v(0,2) =vo(z), x€R, (1.2)

where v = (v1,...,v,). The equations are weakly coupled. If ¢ > 0, then the first
hyperbolic wave equation in (1.1) is called the telegraph equation. The others equa-
tions in (1.1) are of first-order with a space parameter x. Our results are true if we
consider the first equation in (1.1) only with f not depending on v (see examples in
Remark 4.4).

Some information especially about the maximum principles and the existence of
time-periodic bounded weak solutions for the wave or telegraph equations is given
in [12,16].

Physical motivation of system (1.1) with ¢ =1 and f, g of a special form together
with a construction of the solitary waves solutions and their stability are given in [13].
The existence, uniqueness and continuous dependence on the initial values of global
classical solutions to a similar system but with the parabolic leading equation instead
of our telegraph or wave equations were studied by J. Evans and N. Shenk [6, 7].
Moreover, J. Evans in [7-10] considered a stability in the suitable sense of stationary
and traveling wave classical solutions to such systems. Those systems describe for
example the dynamics of a nerve impulse in axons and they cover in particular the
Hodgkin-Huxley system. Similar evolutionary systems appear also in [15]. In [11]
there is described a connection between fast and slow waves in the FitzHugh-Nagumo
system. Realistic view of wave mechanics was first proposed by de Broglie [1]. In his
inspiring work Madelung related the linear Schrédinger equation to the hydrodynamic
type system [14]. The various aspects of the hydrodynamic [2] and mechanistic [5]
formulations of the nonlinear Schrédinger equation are still at the center of interest.
These formulations lead to systems composed of the second or the third order partial
differential evolution equations and the first order ones.

In this paper we consider local in time bounded together with their first derivatives
solutions (u,v), u € CLE*([0,7] x R,R)NC? ([0,7] x R,R), v € CLF* ([0, 7] x R,R™)

loc loc
of the initial problem (1.1), (1.2), where C.t* ([0, 7]x R,R) and C.T* ([0, 7] x R,R")

(o € (0,1]) are some Hélder spaces (see Section 2). If @ = 1, then C1® = € and
they are global Lipschitz spaces. The main result of the paper is a theorem on the
existence, uniqueness and estimates of such solutions. The estimates can be given a
priori and they depend on the estimates of the initial conditions and the right-hand
sides of equations. In the proof of the theorem we use the Banach fixed-point theorem,
the Arzeli-Ascola lemma and the integral form of the differential problem. The similar
construction of the proof was used by T. Czlapinski [3,4] for quasilinear hyperbolic
partial differential functional equations of the first order.

The paper is organized in the following way. In Section 2 a notation is introduced
and some definitions and assumptions are formulated. The integral system equivalent
under some assumptions to the initial differential problem (1.1), (1.2) is given in
Section 3. In Section 4 the theorem on the existence, uniqueness and estimates of
solutions to (1.1), (1.2) is proved.
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2. NOTATION, DEFINITIONS AND ASSUMPTIONS

Let || - || be the mazimum norm in R?, i.e.

yil, (2.1)

where y € R%. In the space of bounded continuous functions Cy (€2, R?) we define the
supremum norm

H?JH = max;=1,..d

Izllo = sup {[[z(w)]| : w € O}, (2.2)

where z € C, (2, R?), @ = R or Q C R2. Obviously (C, (€, R?),]| - ||o) is the Banach
space. The space of bounded continuous functions together with their first deriva-
tives we denote by C} (Q, Rd) and together with their first and second derivatives by
C’E (Q,Rd). By the symbol

1zl = lzllo + ll2¢llo + llz=lo (2:3)

we denote the norm in Cj (Q,R%).
For any z € C, (Q,R?) and «a € (0,1], let

2,0 = sup{”z(t,:c) - z(?f)” ([t =%+ |z —=|]]7*: (t,2),(E7T) € Q} ) (2.4)

Note that [2]g.a < oo is the smallest Holder constant for the function z and the
exponent «, it is usually called the Hélder coefficient. If a« = 1, then it is the Lips-
chitz coefficient. The Hélder space CF+e (Q,Rd), k = 0,1, is the space of functions
z € C’f (Q, Rd) with the finite norm

[2llo+a = llzllo + 2]z if k=0, (2.5)

1zl = llzll + [2t] a0 + [22]Ha i k=1 (2.6)

If @ =R, then ¢t and z; in the above definitions do not appear.
Let A(xz,7) C Rx[0,7], z € R be any isosceles triangle with the vertices (z —,0),
(z,7), (x + 7,0). We denote by C.F*([0,7] x R,RY) the Hélder space of functions
z € CH[0,7] x R,RY) such that z € C**(A(z,7),R?) for any A(z,7) with the

constants
[Zt]H,a,A(:L’,T)
= sup {Hzt(t,x) - zt(f,E)H [t =t + |z -z~ (t,2),( 7)€ Az, 7)},
[zz]H,a,A(m,'r)
=sup {||zz(t,2) — 2@ D)|| ([t = F + |z — 7] : (t,z),({,T) € A(w,7)}

(2.7)

independent of A(x, 7). We say in this case that z:, z, are uniformly Hélder continuous

in [0, 7] x R. Tt is clear that if « = 1, then Cllota([O,T] x R,R?Y) = C1*o([0, 7] x R, R9).
The following assumption on the functions wug, vg, w1 will be needed.

Assumption H;[ug,vo,u1]. Suppose that ug € C'T(R,R) N C*(R,R), vy €

CHHe (R,R™), uy € CO+*(R,R) N C'(R,R) and that
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luollo < Ar,  luallo < AP, [[(uo)allo < AL, (2.8)
il < AP, [(u0)alyq < A,

1 1
lvollo < Az, 119 (0, uo(-),v0()llo < ASY, [[(wo)elly < ALY,
2 2
(9.0, u0(), vo( N gr.a <AL, [(v0)al o < AY,
where A;, AZ(.j ), i,7 = 1,2, are some non-negative constants.

Definition 2.1. Suppose that Assumptlon H1lug, vo,u1] is satisfied and given
non-negative constants Q;, QJ i,7 = 1,2, such that Q; > A;, Q(]) > A
we will denote by Cb; (Q), where 7 € (0,7], the set of functions (u,v) €
clte ([0,7] x R,R*™™), v = (v1,...,v,), with the properties:

loc
w(0,z) = up(z), v(0,z)=vo(x), wu(0,2)=ui(x), x€R, (2.9)
lully < Qu,  Nuelly < @, Jually < @, (2.10)
2 2
[ut]H,a,A(ac,T) < (1 )7 [uI]H,a,A(w,T) = g )’
lollo < Qa2 luello < @S, lwally < @5,
2 2
Wl ieaen Q) Walganwn < Q5.

We will use the following assumptions on the functions f, g and their first deriva-
tives.
Assumption Hs[f,g]. The functions f, ¢ and the derivatives fz, fp, fr =
(Frise-sfrn)s Gzs Gpy 9r = (Gry,---.9r,) are continuous. Moreover, there exist
non-decreasing functions Mj, Mél), H,, H2(1) : Ri — R4, k = 1,2, such that for
all t,¢ € [0,T], z,T € R, (q1,¢2) € Ri, oL, | < @, I, 117l < g2, i = 1,...,n we
have

|f(t7$7p7 T)| < Ml(q17q2)7 (211)
|f1(tvxapur)|a |fp(t7x7p7 ’f’)| ) |f7"i(t7$7p7r)| S Ml(l)(qlqu)ﬂ (212)
||g(t,:z:,p, T)H < MQ(Ql,QQ), (213)
g0, T, P, 7)1 [|Gp\L, 2P, 7)1 ||Gr; L, T, P, T = 21)((]1,(]2), (214)

(2 I Mlgp(t I Mlgr, )| < M3
”g(tv‘rap, T) -9 (Eaxvpv 7“) || < HQ(q17q2)|t _ﬂa’ (215)

g2 (8, 2,p,7) — g2 (6,7, 5,7)| < HS (a1, 02) [J& — Z| + |p — B + ||r — 7[]°
lgp(t, 2, ,7) — gp (4,7, 5,7) | < HS (g1, q2) [l — Z + [p —p| + ||r = 7], (2.16)
gr (t, 2, p,7) — goy (7,5, 7| < HS (01, 2) [J& — 2| + |p — B + ||Ir = 7[]°
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Put M = My (Qu.Q2), My = M{" (Qu.Q), Hy = H(Q1,Qa), H" =
H2(1) (Q1,Q2), k = 1,2. Some inequalities concerned Q;, QEJ)
satisfied.

Assumption H3[Q]. Suppose that

, 4,5 = 1,2, have to be

Q1 > Ay,

1 1
Q> AW,

2 > oA, a€(0,1), (2.17)

I Vi Q1+ A1+—cA(1+2A§2, a=1,

QZ > A2a
le) > Mg Q( ) > A(l)
(2) > HQ, (2) > A o€ (O7 1)7 (218)

Q) = MgV [1+2 (Qﬁ” +nQ")]| + Hy, =1,

G > (14 +nQV) + 4, a=1.

Remark 2.2. The conditions (2.11)—(2.14) in Assumption Hs[f, g] are equivalent to
boundedness of f, g and f., fp, fri, Gzs Gps gr; On the sets [0, T]xRx[—q1, q1] X [—q2, ¢2]"
for any (q1,q2) € Ri, i.e. globally with respect to ¢,z and locally with respect to p, r.
If f, g are globally Lipschitz continuous with respect to x,p,r or f, g do not depend
on t,x and are locally Lipschitz continuous with respect to p,r, then (2.12), (2.14)
hold. But the global Lipschitz continuity of f, g with respect to ¢,z and local one with
respect to p, r not always imply (2.12), (2.14), e.g. f(¢,x,p,r) = xsinp. On the other
hand the function f(¢,z,p,r) = p?sinz is locally Lipschitz continuous with respect
to z,p only and (2.12) is true. The form of (2.11)—(2.14) is useful in applications
because we do not have to calculate the norms. It is important for example if we
consider differential equations with the polynomial right-hand sides. An analogous
situation appears in Assumption Hi[ug, v, u1]. An analysis of the local or global
Holder continuity of g, gx, gp, gr, in conditions (2.15), (2.16) is similar as the above
one concerning the local or global Lipschitz continuity of f,g (see Remark 4.4 and
examples (4.23), (4.24)).

Remark 2.3. Note that in Assumption H3[Q] a choice of the constants @, QZ(-j ),
1,7 = 1,2, is possible for any given A;, AZ(-J)7 1,7 = 1,2. So we may give a priori the
estimates of the solution of the differential problem (1.1), (1.2), its first derivatives
and the Holder constants of its first derivatives.
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Define the constants

1 2
Sir = 5 |:J\4'ik + C4Q1:| 2+ EAl +Agl)] T+ Ay,
(1t) € L ¢ 2 L ¢ c? CAD
Sir =1 My +ZQ1 T+ | My +ZQ1+ZA1+§ 1|7
4 271+OAA§2)7—& 4 Agl)
2
50— [ar+ S 4 A0 72t gD

R
ey M+ (142 (" (14 Q1 +nQl)

(2.t) 62 * C4 3—«
Sir = | M +3*2Q1 T

w

: 2
+ CZ (14+27°)Q + CZ (1+272) QY
g+ (142! )Ai”] 72

2 2 3
+ §A§2)r + [Mf + %Ql + CZAI + QCA?)} e oA,

3
« C
§2) _ [;Ml* + (1427 a1+ QY 400 ) + T

¥

C

+T (1+2179) QE”] r2-a

2 2 31704
- [Ml* - %Ql + %Al +e (1 + = ) Ag”} i g ap )

Sor = M7+ Ao,
Sy = M3,
S " [14.GfY + ]+ A9
S0 =m0 [2re 4 (14 2070) (@1 + 0@V | 70+ a3,
s = [ (1+Q" +n@f") (1+ @ + ")’
" (@ +nQf) | 7

+ " (14 QY+l ) 17+ AP,

(2.19)

(2.20)
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Remark 2.4. Note that since
lim S, = Aq, hm S(1 Y — lim S{l'x) = Agl),
T—0t1 =0+ T

lim S = dim, S —9oA? it ae(0,1),
T—0+
2
lim_ 52 = lim +S(2 ) = M+ T+ A1+ch<1 120 i a=1,

7—0

lim Sy = Ay, lim, S(l @) = ALY,
lim+ Séit) H, hm 5(2 z) Aéz) if a€(0,1),
lim 5827 = (1 + QY +nQ) AP i =1,

7—0

we may by Assumption Hg[Q] choose 7 € (0,T] sufficiently small in order that
Sir < Qi, S Zit) <Q]) SJI <Q(J) i,j=1,2.
3. INTEGRAL SYSTEM

In this section we give a lemma which will be crucial in our future considerations.
Consider a nonlinear integral system of (1 + n) equations of the form

t z+(t—s) . R
a(tr)=5[ [ e 50 [f (s, uls ), 0(s ) + Gulsy)| dyds
0 z—(t—s
(i ac)-i-t at
+3e7 2t [ uy(y)dy + Sem 2t [ uo(y)dy 31
T—t x—t ( . )
+5e 2 fug(x +t) + uo(z — 1)), (t,z) € [0,T] x R,
¢
o(t, ) = vo(x) + [ g (s,z,u(s, z),v(s, 2)) ds (t,z) € [0,T] x R.
0

Lemma 3.1. Under Assumptions Hi|uo,vo,u1] and Ha[f, g], the differential initial
problem (1.1), (1.2) and the integral system (3.1) are equivalent in the sense that
any solution (u,v) € C?([0,T] x R,R) x C*([0,T] x R,R™) of (1.1), (1.2) is a so-
lution of (3.1) and any solution (u,v) € C*([0,T] xR, R™") of (3.1) belongs to
C? ([0, T] x R,R) x C* ([0,T] x R,R™) and fulfills (1.1), (1.2).
Proof. The first equation in (1.1) is equivalent to the equation

2 2

Ugp — Uy + CUy + Czu = f(t,x,u,v) + Czu, (t,z) € [0,T] x R.

Hence, the anzats u = we™ 2! transforms problem (1.1), (1.2) to the equivalent differ-
ential system

{wtt — Wgy = e%tf (ta wie_%t7v) + %wv (t,.’L‘) € [OvT] X Rv (3 2)

vt:g<t,a:,we_%t,v), (t,l') S [O7T] x R
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with the equivalent initial conditions

w(0,z) = up(x), z € R,
v(0,z) = vg(x), z € R, (3.3)

wy (0,2) = Sug(x) +ui(z), = eR.

The continuity of f, g, ug,vo, u1, the use of Riemann’s method (see [16, p. 196]) for
the first equation in (3.2) and integration of the second one imply that any solu-
tion (w,v) € C?([0,T] x R,R) x C* ([0, T] x R,R") of (3.2), (3.3) is a solution of a
nonlinear integral system of (1 + n) equations of the form

t z+(t—s)
1 cg _cg CZ
wita) =5 [ [ |5 s Gomntse #ots.0) + )| duds
0

z—(t—s)

x+t
+5 [ [ + )] dy -
+%[u0(x+t)+uo(x—t)], (t,z) € [0,T] x R,

Multiplying the first equation in (3.4) by e~3*

C?([0,T) x R,R) x C* ([0, T] x R,R™) of the differential initial problem (1
is a solution of the integral system (3.1).

On the other hand, let (u,v) € C* ([0,T] x R,R*™™) be a solution of (3.1). Put
for simplicity

we have that any solution (u,v) €
1), (1.2)

A(t,z,s) = (s,x + (t — s),u(s,z + (t — s)),v(s,x + (t — s))),

B(t,z,s) = (s,2 — (t — 8),u(s,x — (t — 5)),v(s,z — (t — 9))).

From the regularity of f,g,ug,vo,u; and differentiation of the integrals in (3.1) we
have
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u(t, @) = —2/ / e 2079 [f (s,9,u(s,y),v(s,y)) + fU(&y)} dyds
0 z—(t—s)
n % jes<ts> {f(A(t,:z:,s)) + %u(s,er (t— 5))] ds
0
+ % /teg(ts) {f(B(t x,8)) + éu(s x— (t— s))} ds
0
x+t
_ <, gt/ ()dy+%e lur(z+t) +ur(z —t)]
2 1.
=St [ unlyay + e 5 o)al 1) = (st~ 1),
, o+ (t— 9
wita) = [ / e | ) (o) + G| s

t

=8 [en e [t + Guls. 6] ds
0

t
2

=8 [ 1B + Futsa - - o) ds
0

- 5(t-9) { LAt 8) + fo(Alt 2, 8))ta (s, + (t — 5))

+
N |
o\N

# Y (Al )0+ (0= ) + Gl + (- )] ds
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t

— 3 [ese [mB(t,x, )+ Fo(B(t,,5)us(s,2 — (t — 5)

0

n 62
+ ZfT (B(t,z,8))(vi)x(s,z — (t —s)) + Zuz(s, x—(t—s))|ds
+ f(t,z,ut,z),v(t, ) + Zu(t x)

02 s C
+5¢ ¥ [ wmdy — e e+ 1) +ule 1)
58 ), (@ +0) = (), (&~ 1)

63 c s 02 c
+ E(f?t / uo(y)dy — gefft [up(z +t) + ug(x — t)]
~ L (ug)ala + 1) (wo)ale 1)
+ 50 5 [(W0)aalo+ )+ (o)l — 1),

er(tr) = 5[50 | (A6 + £ A 0+ (0 5)

+

0
Z fri(A(t, 2, 8)) (v3) (s, 2+ (t—s)) + %ux(s,x +(t - s))} ds

i=1

=5 [ H Bt 9) + (B - (0 5)
0

3 (Bl ) (0i)a (s, — (= 5) + Tuals,z — (¢ - s>>] ds

=1

L ), (4 1) — (), (- )
+ e (woala + 1) — (uo)ale — 1)
L8 ()4 0) + ()l — ).

ve(t,x) = g (6, u(t, z),v(t, x)) .

It is clear that (u,v) € C?([0,T] x R,R) x C* ([0, 7] x R,R™) and fulfills (1.1), (1.2).
O
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4. THE MAIN RESULT

Theorem 4.1. If Assumptions Hi[uo,vo, u1], Ha[f, 9], Hs|Q] are satisfied, then there
is 7 € (0,T) such that problem (1.1), (1.2) has an unique solution (u,v) € C’;,f(Q)

and u € C? ([0, 7] x R,R).

Proof. Define the operator H = (F, G) on C’;’f(Q) by the formula

t x4+(t—s)
1 _C(t—s 02
Fludlta) =3 [ [ 500 [ ot oto.) + Futsa) | s
0 z—(t—s)
L o (1)
et [y fei [ uay
x—t x—t
1 .,
—‘r§€ 2t [ug(z +t) + uo(x — t)],
t
Glu,v](t, z) :v()(ac)—|—/g(s,gc,u(s,gc),v(s,aL'))ds7 (4.2)
0

where (u,v) € CLY(Q), (t,x) € [0,7] x R. Tt is obvious that (u,v) € CL%(Q) is a
solution of the intégral system (3.1) and consequently, under additional aussyumptions7
a solution of the initial differential problem (1.1), (1.2) (see Lemma 3.1) if and only
if its a fix-point of H.

Note that by the Arzeli-Ascola lemma, the set C’;Ta (Q) is closed in the Banach
space (Cp ([0,7] x R,R™) |- [|o). We will show that there is 7 € (0,7] such that
H maps C;”TO‘ (Q) into itself and it is a contraction in the complete metric space
(C';”f(Q),d) with the metric d generated by the norm || - |lo. Then we will use the
Banach fixed-point theorem.

Put for simplicity

A(ta‘T,s) = (s’$ + (t - S),U(S,.’ﬂ + (t - S)),U(S,l’ + (t - 5))) )

B(t,z,s) = (s,2 — (t — 8),u(s,x — (t — 5)),v(s,z. — (t — 9))),

C(zx,s) = (s,z,u(s,x),v(s,x)).



946 Lucjan Sapa

Definitions (4.1), (4.2) and Assumptions H [ug, vo, u1], Ha[f, g] imply

t xz+(t—s)
C c 62
Rluddta) =5 [ [ e 80 |t ol + Futs.n| avas
0 z—(t—s)

t
+ %/e_%(t_s) [f(A(tmc, s))+ %u(s,x + (t— s))} ds
0

4L O/e—é(t—s) [f(B(t,x,s)) + %u(s,x —(t— s))} ds (4.3)

2
x4+t
~ et [y + gemE e+ 1) +ur(e — 1)
2 . o 1 _.
-5 / uo(y)dy + e 2" [(uo)o(z + 1) = (uo)a(e — 1)),
1 / c?
Eyluv](t,z) == [ e 209 | f(A(t, 2, 5)) + —u(s,z + (t — s))| ds
20/ { 4 }
¢ 2
_ %/6*%(%8) {f(B(t,x,s)) + Zu(s,x —(t— s))] ds (4.4)
0
43¢ @)~ o - o)
865 g+ 1) — uo(w — 1)] + 3¢5 [(wo)a(a + 1) + (wo)a(e — 1),
Gilu,v](t,x) = g (t, z,u(t, z),v(t, z)), (4.5)

t
Galu, v](t,2) = (vo)x(x) + / (92 (C(,8)) + gp (C(2,5)) ux(s, )
0 (4.6)
+> 0 9r, (Cla,5)) (v:)a(s,2)] ds,
i=1
where (u,v) € C;”TO‘(Q), (t,x) € [0,7] x R.
We prove firstly that for a sufficiently small 7 € (0,7] the operator H

maps C;f(Q) into itself. Let (u,v) € C;f‘(Q) be fixed. Obviously, H[u,v] €
Ct ([0,7] x R,R*™) and for z € R

Flu,v] (0,z) = uo(x), Glu,v](0,2) =vo(x), Filu,v](0,2)=wui(x). (4.7)
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It is enough to show that there exists 7 € (0,7 such that for each (¢,z) € [0,7] x R

Flu,o)(t,2)] < Q1,  |[Fifu,o)(t,2) < QY. |Eulu,o)(ta) < QV,  (4.8)
IGlu, o]t 2)] < Qs |Geluvl(t,2)]| < Q8. [|Galu,v](t,2)] < Q. (4.9)

and for an arbitrarily fixed triangle A(X,7), X € R and for each two points
(t,z), (t,T) € A(X,T)

| Fyfu, o)(t, 2) — Fyfu, )£, 7)] < QP[|t — 7| + |« — 7], (4.10)

| Fulu, v)(t, @) — Fylu, o) (£,7) < QP[It — 7 + |2 — 7],
1Glu, o) (1, ) — Gelu, 0)@,T)|| < QP (|t — 7| + |z — 7], (4.11)

|G lu, v](t, @) — Golu, o] (7)) < QS [t — | + | — T[]

From Assumptions Hi[ug, vo, u1], Ha[f, g], the properties of integrals and definitions
(2.19), (2.20) we have

|Flu,v)(t,2)| < Sir, |Filu,v](t, )| < S | Folu, o)t 2)] < SE (4.12)

|G u,v)(t, 2) || < Sor, |Gelu,v](t2)]| < SS7, |Galu,v](t,2)|| < ST (4.13)

for (t,z) € [0,7] xR. Let A(X, 7) be fixed and (¢, z), (¢,T) € A(X, 7). Using the mean
value theorem for the functions:

t z+(t—s)

pita) = [ [ 5 st olo.) + Gute, ] avas,
0 z—(t—s)

fa(t,x) = /te z(t=s) {f(A(t,ams)) + %u(s,x + (t— s))} ds,
0

fa(t,x) = je 5(t=9) {f(B(t,x,s)) + %u(s,x —(t— s))] ds,
0

x4t x+t

U (t,z) =e 2" / uy (y)dy, Uo(t,x) = e 2' / uo(y)dy, Uo

z—1 r—t
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and the relations: [t —#| = [t — |17t —¢|%, |z —F| = |z —ZF|' Y|z — 7|, [t —¢| < T,
|z — Z| < 27 we obtain

|Fofu, 0]t @) = Fyfu, o] ()|

t z+(t—s)
<¢ 5 [ (st o) + Guls)]
T T+(t—s) ) )
- / / Jes) [f (s, u(s.9). v(s,9)) + 1u<s,y>] ‘
0 z—(t—s)
1 / c 2
—|—§ /e_ﬁ(t_s) [f(A(t x,8)) + —u(s,z+ (t — s))] ds
0
_ /efé(tfs) [f (A(t,z,5)) + 64—211 (s,z+4 (- s))] ds
0
1 / c 2
+§ /675(%5) [f(B(t,x,s)) + —u(s,z — (t — s))} ds
0
- [ [f (B (0.7.5)) + S (5,7 — (i s))} ds (4.14)
0
T+t T+t
+gle? / ur(y)dy —e 2" [ wi(y)dy
z—t T-1
+ % e Stuy(z+1t) —e Fuy(z+ 1) + e Ftuy (v 4 1) — e Fuy (T4 t)‘
+ % e Sty (z—t) — e Sug(w —t) + e Flug(z —t) — e Fluy (T — t)‘
) x4t . T+t
+ e / uo(y)dy — e 2" [ uo(y)dy
z—1 T—1
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t; z1+(t1—s)

- %/ / em2(h=s) [f(S»yw(&y),v(s,y)) + C:U(&y)} ds

0 z1—(t1—s)

t1

c CQ
+ / e (1= {f (Aftr,w1,5)) + (s, + (0 — s>>} ds

ju(s,ml — (- 3))} ds

ol o

t—1]

+
o o
—
('h
1\:\0
=
H
&
—
~
—~
Sy
—
~
-
8
i,
S~—"
S~—"
+

CZU (s, 21 + (t — 5))} ds

S~ (1) s

|z — 7|

[_ Ce—5(ta—s) {f(A(tg,xg, s)) + %u(s,xz + (t2 — S))]

+em8(t279) [fz(A(t%va 8)) + fp(Altz, 22, 8)Jus (s, 22 + (2 — 5))

+Zfr, tanZa )(vi)m(saxQ"_(tQ —S))

2

+ Czuz(syﬂ?z + (t2 — 5))”‘13

2

C _
+ f (t2a X2, u(tZa xQ)a ”U(tg, .’ﬂg)) + ZU(tQ; xQ) ‘t - t|

Jo(A(ta, 2, 5)) + fp(A(t2, 22, 8))us (s, v2 + (t2 — 5))

+an (t2,2,5))(vi)a (s, 22 + (f2 — 5))

2
+ CZUI(S, x2 + (t2 — S))} ds||z — |
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ts

/ [;eé(tss) [f (B (t3, x3,5)) + %u (s,23 — (t3 — 5))]

0

L1
2

_ 67§(t3 s) [f:c (B (t3, rs3, S)) + fp (B (t3a‘r3a 5)) Uy (57:173 - (t3 - 5))

+Zfr (ts, 73,5)) (vi)z (5,73 — (t3 — 5)) + %Uz (s,23 — (t3 — 3))H ds

2
C —
+f (t3, w3, (t3,73) v (t3,23)) + T (t3,23)| [t — 1]

t3

e 8 o (B ta,5)) o+ 1, (B (. 00,5)) w50 = (12 = 5)

0

L1
2

—|—Z fri (B (t3,3,8)) (vi)z (s,23 — (t3 — 8)) + CZU.L (s,x3 — (t3 — s))] ds

X |z — T
T4+ty
C C _c _c I
+ Z _ 56 3t / ul(y)dy + e zta [U1 (CE4 + t4) + uq (1'4 - t4)] ‘|t - t|
$4—t4

e 2 uy (24 +t) — up (T4 — t4)| |2 — T

1 _
+=|—=e

S |-5eHe =D e+ 0)] + %e’?lwm —u (@ +7)|

! o 1 g .
b a L5t =D o — ] + 265 s (@ — 1) — (7~ )

re+te

C _ ¢ n
_ S5t / o(y)dy + e~ 2 [uo(x6+t6)+u0(fﬂ6—t6ﬂ‘|t—t|

2
-

L ¢
8

e — t5

+ 67%% |u0 (JCG + tﬁ) — Up (xG - t6)| ‘I - §|

b5 |58 = ) Jwoa (e + O]+ 567 (o)l + 1) — (o)al@ +)

5 |5 = D)1 wo)elr — )] + 56 [(woalr — 1) — (wo)alE ~ )]
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clc * 62 21—« * 02 11—«
< 1132 ileerl T°T +2 leJrZQl TT
2 2
1
2 (Mik + —64 Q1> 7(27)10‘} +2- 3 [; (Mf + 24 Q1> i

. c
M (14 Q1 4 Q) rri-e 4 S Qe a+<Mf+4Q1) -

M (1401 + Q0 ) iz~ + S vz ]

C(EAD D) 10, A@ (gyaioi-al o A 1-a _, A2

+ [(QA1 27 4 24 )T + AP (2r)(2r) ]+2A1 7l LA
e 1 A (D) 1ma] L S 1a A

+t3 {(§A12T+2A1)T + Ay727(27) ]+§A1 T+ A }

x ([t =t + o -z

2.t - _
= 5170t =8 + o — 7).
The points (¢;,z;) € A(X,7), ¢ = 1,...,5, are intermediate ones. Making similar
calculations as above we get

}FT [, v](t, ) — Fp[u, v}(t,f)|
< {[(Gar + 2 (1 04" +”Q“’)) it

g <1+le) +anl)) (2n)* CZ K Qi+ QY )T+Q1] ™

, (4.15)
C W Nl—a- , A2 | CA) 1—a , C[xMWiq1—a , Cp _1-a
+ e en  r + AP + AR 4+ 2 AP B + Saart ]
AP + ZAD T [l 7]+ o - 7))
= SEN|t — 7| + |z — 7)),
|Gelu, v](t, ) — Gy[u, v)(T,7)|| < {Hék +M2(1)* |:(27—)17a JrQ(ll) (rlme 4 (2r)179)

QS (77 + @n) ) [} =T + o - )
= S5t =1 + |o — 2
(4.16)

for a fixed A(X, 1) and (¢,z), (¢,7) € A(X, 7). Because of the non-sufficient regularity
of g we can not use the mean value theorem for g (t,x) = G[u,v](t, z). But using

the additivity of an integral we have
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Az -z +/||g C(a.s))| ds +

+/ng C(z, 8))ug(s,x) — gp(C(z, 8))uz(s,T)| ds
0

t
" / 190(C @ 8))ua(5, ) — gp(C(F, 8))us (s, 7| ds + \ / M QWds

+Z/Hg (vi)a(s,2) = gr, (C(,5))(vi)a(s,7)| ds

t
/ MV QM ds
t

(4.17)

£y / o€ 8)) (0112 (5:7) = 91 (O, ) w1)e (5,7 s +

=17
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t
< APzt / HO* [lo — 2| + u(s, @) — u(s, T)|
0
+o(s,z) —o(s,T)]" ds + M{D* |t — 7]
t t
+ / M QPe — 7ds + / H* (J2 — %] + u(s, ) — u(s,T)|
0 0

+o(s,z) —o(s, )] QV ds + MV QM |t — 7|

t

/M§1>*Q§2>|z —z|%ds
0

n
>
i=1

t
+ [ o7+ futs. ) — u(s. )
0
+ llo(s,2) = o5 D] Q8Vds + ME Qe —t|]

< AP o =7 + B [lo =7 + Qe =3 + Qo — 7| 7+ M1t 7]
+ M QP o — o7 + HV" [l — 7 + QP r — 7+ Qe — 7] @Y7
+ Qe - 7]

[ MV QP e —alor + BV [lo — 7 + Qe — 7l + Qo — 3] QY7

+ Q"1 7

< {af + m> (14 Q0 + Q) 4 paf e
+M2(1)* (12)7'—|—H2(1)* (1 +Q(11) +Q§1)> §1)7+M2(1)* 51)7_1%

«
0 M QP T+ B (140 + Q) Q' + M Q1] }
x (It =t + |z —z|]*

= SNt — 1) + |z —z()°

for a fixed A(X,7) and (¢,z), (t,Z7) € A(X, 7). The inequalities (4.12)—(4.17) and
Remark 2.4 imply the existence of 7 € (0,7 such that (4.8)—(4.11) are true.
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Now we prove that for a sufficiently small 7 € (0, 7] the operator H is a contrac-
tion. Indeed, if (u,v), (w,7) € C;;Ta(Q) and (t,z) € [0,7] X R, then using Ha[f, g], the
mean value theorem for f and the theorem on the estimate of an increment of g we

have

t x+(t—s)
1 c
|[Flu, v](t,2) = Fla,7](t )] < 5 e 30| (5,9, u(s,9),v(s, 9))
0 z—(t—s)
_f (S?yva<svy)a@(8ay))|dyds
t z+(t—s)
02 c
+ g/ / 6_5(t_3)’u(s,y) — (s, y)|dyds
0 z—(t—s)
) t z+(t—s)
<5 [ [ @ty -t
0 z—(t—s)

3 |fr (Pl Joi(s,) —vi(s,y)lldyds

i=1

) t x+(t—s)
C
+§/ / lu(s,y) — (s, y)| dyds
0 z—(t—s)
1 . 2
g2h1+mM§>+i}¥|m—%v—m%,

1Glu, v](t, 2) — G, 7]t )|
s/mwmmw@w@mww@wmmmm@mmw
0

g

0
< (1 4+n) MOV 7 ||(u—1,0 =),

lgp (P2l [u(s, ) = (s, 2)| + Y llgr, (P2)] |vils, @) —vils, )| | ds

i=1

(4.18)

(4.19)

where P;, Py € [0, 7] xRX[-Q1, Q1] X [—Q2,Q2]" are intermediate points. Inequalities

(4.18), (4.19) imply
[H[u, v] = H(®@,0)[ly < D7 [[(u —u,0 =)o,

where )

D, = max{ {(1 + n)Ml(l)* + Cz 2 (1 + n)MQ(I)*T} )

N =

(4.20)

(4.21)
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It is obvious that there is 7 € (0,T] such that
D, < 1. (4.22)

The use of the Banach fixed-point theorem and Lemma 3.1 finishes the proof. [

Remark 4.2. It follows from the proof of Theorem 4.1 that the set [0,7] x R of
the existence and uniqueness of solutions to (1.1), (1.2) can be found by solving the
inequalities S;r < @, Sg't) < ng), Sl-(z'm) < ng), i, = 1,2, (see Remark 2.4) and
inequality (4.22).

Remark 4.3. If additionally, in Theorem 4.1, ug € CZ(R,R) and u; € C}(R,R),
then u € C? ([0, 7] x R, R).

Remark 4.4. If the functions f, g generating the system (1.1) do not depend on
t, x and f is of C' class and g is of C? class on R!*", then all the assumptions of
Theorem 4.1 are satisfied. It is true especially for the equations with any polynomial
right-hand sides with respect to p, r. Add that Theorem 4.1 works if we consider
the first equation in (1.1) only (the nonlinear wave equation for ¢ = 0 and the non-
linear telegraph equation for ¢ > 0). The examples of such equations are the forced
dissipative sine-Gordon equation with a variable coefficient

Upp — Uy + cuy + a(t, x) sinu = h(t, x) (4.23)
and the superlinear telegraph equation
Uty — Ugy + cup + du™ = h(t, x), (4.24)
where d € R, m € N and a, ay, h, h, are continuous and bounded on [0,7] x R
(see [12]).
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