PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A cloud-based urban monitoring system by using a quadcopter and intelligent learning techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The application of quadcopter and intelligent learning techniques in urban monitoring systems can improve flexibility and efficiency features. This paper proposes a cloud-based urban monitoring system that uses deep learning, fuzzy system, image processing, pattern recognition, and Bayesian network. The main objectives of this system are to monitor climate status, temperature, humidity, and smoke, as well as to detect fire occurrences based on the above intelligent techniques. The quadcopter transmits sensing data of the temperature, humidity, and smoke sensors, geographical coordinates, image frames, and videos to a control station via RF communications. In the control station side, the monitoring capabilities are designed by graphical tools to show urban areas with RGB colors according to the predetermined data ranges. The evaluation process illustrates simulation results of the deep neural network applied to climate status and effects of the sensors’ data changes on climate status. An illustrative example is used to draw the simulated area using RGB colors. Furthermore, circuit of the quadcopter side is designed using electric devices.
Twórcy
  • Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
  • Polytechnic Institute of Porto, Portugal
Bibliografia
  • [1] U. Lee, B. Zhou, M. Gerla, E. Magistretti, P. Bellavista, A. Corradi, “Mobeyes: smart mobs for urban monitoring with a vehicular sensor network,”IEEE Wireless Communications, vol. 13, no. 5, 2006, pp. 52–57. DOI: 10.1109/WC-M.2006.250358
  • [2] P. J. Urban, G. Vall-Llosera, E. Medeiros, S. Dahlfort, Fiber plant manager: An OTDR-and OTM-based PON monitoring system,” IEEE Communications Magazine, vol. 51, no. 2, 2013, pp. S9–S15. DOI: 10.1109/MCOM.2013.6461183
  • [3] A. del Amo, A. Martínez-Gracia, A. A. Bayod-Rújula, J. Antoñanzas, “An innovative urban energy system constituted by a photovoltaic/thermal hybrid solar installation: Design, simulation and monitoring,” Applied Energy, vol. 186, 2017, pp. 140–51. DOI: 10.1016/j.apenergy.2016.07.011
  • [4] I. Sa, P. Corke, “Vertical infrastructure inspection using a quadcopter and shared autonomy control,” Field and Service Robotics. Springer, 2014, pp. 219–32. DOI: 10.1007/978-3-642-40686-7_15
  • [5] X. Song, K. Mann, E. Allison, S.-C. Yoon, H. Hila, A.Muller, C. Gieder, “A quadcopter controlled by brain concentration and eye blink”, Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, 3-3 Dec. 2016, pp. 1–4. DOI: 10.1109/SPMB.2016.7846875
  • [6] D. E. Chang, Y. Eun, “Global Chartwise Feedback Linearization of the Quadcopter with a Thrust Positivity Preserving Dynamic Extension,” IEEE Transactions on Automatic Control, vol. 62, no. 9, 2017, pp. 4747–52.
  • [7] C. Yang, Q. Huang, Z. Li, K. Liu, F. Hu, “Big Data and cloud computing: innovation opportunities and challenges,” International Journal of Digital Earth, vol. 10, no. 1, 2017, pp. 13–53.
  • [8] M. Sookhak, A. Gani, M. K. Khan, R. Buyya, “Dynamic remote data auditing for securing big data storage in cloud computing,” Information Sciences, vol. 380, 2017, pp. 101–16. DOI: 10.1016/j.ins.2015.09.004
  • [9] Y. Zhang, M. Qiu, C. -W. Tsai, M. M. Hassan, A. Alamri, “Health-CPS: Healthcare cyber-physical system assisted by cloud and big data,” IEEE Systems Journal, vol. 11, no. 1, 2017, pp. 88–95. DOI: 10.1109/JSYST.2015.2460747
  • [10] J. L. Schnase, D. Q. Duffy, G. S. Tamkin, D. Nadeau, J. H. Thompson, C. M. Grieg, M. A. McInerney, W. P. Webster, “MERRA analytic services: meeting the big data challenges of climate science through cloud-enabled climate analytics-as-a-service,” Computers, Environment and Urban Systems, vol. 61, 2017, pp. 198–211. DOI: 10.1016/j.compenvurbsys.2013.12.003
  • [11] Nakamura J., Image sensors and signal processing for digital still cameras, CRC Press, Boca Raton, 2016.
  • [12] Y. LeCun, Y. Bengio, G. Hinton, “Deep learning”, Nature, vol. 521, no. 7553, 2015, pp. 436–44. DOI: 10.1038/nature14539
  • [13] Goodfellow I., Bengio Y., Courville A., Deep Learning, MIT Press, 2016.
  • [14] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, K. -R. Müller, “Evaluating the visualization of what a deep neural network has learned,” IEEE transactions on neural networks and learning systems, vol. PP, no. 99, 2016, pp. 1–14. DOI: 10.1109/TNNLS.2016.2599820
  • [15] F. J. Cabrerizo, F. Chiclana, R. Al-Hmouz, A. Morfeq, A. S. Balamash, E. Herrera-Viedma, “Fuzzy decision making and consensus: challenges,” Journal of Intelligent & Fuzzy Systems, vol. 29, no. 3, 2015, pp. 1109–1118. DOI: 10.3233/IFS-151719
  • [16] N. A. Korenevskiy, “Application of fuzzy logic for decision-making in medical expert systems,” Biomedical Engineering, vol. 49, no. 1, 2015, pp. 46–49. DOI: 10.1007/s10527-015-9494-x
  • [17] T. Runkler, S. Coupland, R. John, “Interval type-2 fuzzy decision making,” International Journal of Approximate Reasoning, vol. 80, 2017, pp. 217–224. DOI: 10.1016/j.ijar.2016.09.007
  • [18] Z. Hao, Z. Xu, H. Zhao, R. Zhang, “Novel intuitionistic fuzzy decision making models in the framework of decision field theory,” Information Fusion, vol. 33, 2017, pp. 57–70. DOI: 10.1016/j.inffus.2016.05.001
  • [19] Devroye L., Györfi L., Lugosi G., A probabilistic theory of pattern recognition, Springer Science & Business Media: Berlin, 2013, vol. 31.
  • [20] C. Bielza, P. Larrañaga, “Discrete Bayesian network classifiers: a survey,” ACM Computing Surveys (CSUR), vol. 47, no. 1, 2014, Article No. 5. DOI: 10.1145/2576868
  • [21] F. Calabrese, M. Colonna, P. Lovisolo, D. Parata, C. Ratti, “Real-time urban monitoring using cell phones: A case study in Rome,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 1, 2011, pp. 141–151. DOI: 10.1109/TITS.2010.2074196
  • [22] K. Abraham, S. Pandian, “A low-cost mobile urban environmental monitoring system,” Proceedings of the 4th IEEE International Conference on Intelligent Systems Modelling & Simulation (ISMS), Bangkok, Thailand, 29-31 Jan. 2013, pp. 659–664. DOI: 10.1109/ISMS.2013.76
  • [23] J. Lee, Z. Zhong, B. Du, S. Gutesa, K. Kim, “Lowcost and energy-saving wireless sensor network for real-time urban mobility monitoring system,” Journal of Sensors, vol. 2015, 2015, pp. 1–8. DOI: 10.1155/2015/685786
  • [24] K. B. Shaban, A. Kadri, E. Rezk, “Urban air pollution monitoring system with forecasting models,” IEEE Sensors Journal, vol. 16, no. 8, 2016, pp. 2598–2606. DOI: 10.1109/JSEN.2016.2514378
  • [25] W. Zhao, T. H. Go, “Quadcopter formation flight control combining MPC and robust feedback linearization,” Journal of the Franklin Institute, vol. 351, no. 3, 2014, pp. 1335–1355. DOI: 10.1016/j.jfranklin.2013.10.021
  • [26] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61, 2015, pp. 85–117. DOI: 10.1016/j.neunet.2014.09.003
  • [27] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P.-M. Jodoin, H. Larochelle, “Brain tumor segmentation with deep neral networks,” Medical Image Analysis, vol. 35, 2017, mpp. 18–31. DOI: 10.1016/j.media.2016.05.004
  • [28] C.-C. Hsu, K. -S. Wang, H.-Y. Chung, S.-H. Chang, “A study of visual behavior of multidimensional scaling for kernel perceptron algorithm,” Neural Computing and Applications, vol. 26, no. 3, 2015, pp. 679–691. DOI: 10.1007/s00521-014-1746-2
  • [29] Ross T. J., Fuzzy logic with engineering applications, John Wiley & Sons, 2009.
  • [30] M. Cococcioni, L. Foschini, B. Lazzerini, F. Marcelloni, “Complexity reduction of Mamdani Fuzzy Systems through multi-valued logic minimization,” Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Singapore, 12–15 Oct. 2008, pp. 1782–1787. DOI: 10.1109/ICSMC.2008.4811547
  • [31] M. S. Gharajeh, S. Khanmohammadi, “Dispatching Rescue and Support Teams to Events Using Ad Hoc Networks and Fuzzy Decision Making in Rescue Applications,” Journal of Control and Systems Engineering, vol. 3, no. 1, 2015, pp. 35–50. DOI:10.18005/JCSE0301003
  • [32] M. S. Gharajeh, S. Khanmohammadi, “DFRTP: Dynamic 3D Fuzzy Routing Based on Traffic Probability in Wireless Sensor Networks,” IET Wireless Sensor Systems, vol. 6, no. 6, 2016, pp. 211–219. DOI: 10.1049/iet-wss.2015.0008
  • [33] S. Khanmohammadi, M. S. Gharajeh, “A Routing Protocol for Data Transferring in Wireless Sensor Networks Using Predictive Fuzzy Inference System and Neural Node,” Ad Hoc & Sensor Wireless Networks, vol. 38, no. 1–4, 2017, pp. 103–124.
  • [34] M. S. Gharajeh, “FSB-System: A Detection System for Fire, Suffocation, and Burn Based on Fuzzy Decision Making, MCDM, and RGB Model in Wireless Sensor Networks,” Wireless Personal Communications, vol. 105, no. 4, 2019, pp. 1171–1213. DOI: 10.1007/s11277-019-06141-3
  • [35] M. S. Gharajeh, “Implementation of an Autonomous Intelligent Mobile Robot for Climate Purposes,” International Journal of Ad Hoc and Ubiquitous Computing, vol. 31, no. 3, 2019, pp. 200–218. DOI: 10.1504/IJAHUC.2019.10022345
  • [36] M. S. Gharajeh, “A Knowledge and Intelligence-based Strategy for Resource Discovery on IaaS Cloud Systems,” International Journal of Grid and Utility Computing, vol. 12, no. 2, 2021, pp. 205–221. DOI: 10.1504/IJGUC.2021.114819
  • [37] M. S. Gharajeh, H. B. Jond, “Speed Control for Leader-Follower Robot Formation Using Fuzzy System and Supervised Machine Learning,” Sensors, vol. 21, no. 10, 2021, Article ID 3433. DOI: 10.3390/s21103433
  • [38] B. C. Ko, K.-H. Cheong, J.-Y. Nam, “Early fire detection algorithm based on irregular patterns of flames and hierarchical Bayesian Networks,” Fire Safety Journal, vol. 45, no. 4, 2010, pp. 262–270. DOI: 10.1016/j.firesaf.2010.04.001
  • [39] B. U. Töreyin, Y. Dedeoğlu, U. Güdükbay, A. E. Cetin, “Computer vision based method for real-time fire and flame detection,” Pattern Recognition Letters, vol. 27, no. 1, 2006, pp. 49–58. DOI: 10.1016/j.patrec.2005.06.015
  • [40] B. C. Ko, K.-H. Cheong, J.-Y. Nam, “Fire detection based on vision sensor and support vector machines,” Fire Safety Journal, vol. 44, no. 3, 2009, pp. 322–329. DOI: 10.1016/j.firesaf.2008.07.006
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a230dd6-df91-47fd-9f10-6cd32cee64a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.