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Abstract. In this paper, dynamic response of non-prismatic elastic beam resting on elastic 

foundation and subjected to moving distributed masses is investigated. To obtain the solu-

tion of the fourth order partial differential equations with singular and variable coefficients 

governing the motion of the structural member, an elegant mathematical procedure involv-

ing the Mindlin and Goodman's technique, the generalized Galerkin method and the asymp-

totic Struble's technique with the series representation of the Heaviside function. Various 

results obtained from the analysis of the closed form solutions are presented in plotted 

curves and fully discussed. 
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1. Introduction 

The problem of assessing the dynamic response of a structural elements (beam 

or plate) which supports moving loads is fundamental in the analysis and design of 

high way and railway bridges and as such this problem continues to attract the  

attention of research engineers in the field of civil, mechanical, aerospace, transport 

engineering and related fields [1-16]. 

In most of the existing literatures on dynamics of structures under moving 

loads, the vibration, analysis of elastic beam with uniform cross-section under the 

passage of moving loads are commonly investigated. In particular, both moments 

of inertia I and mass per unit length µ  of the beam are most often assumed not 
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varying with spartial coordinate x  along the span of the beam. In recent years, such 

important engineering problems as the vibration of turbines, hulls of ships and 

bridge girders and so on, involving the theory of vibration of structures of variable 

cross-section have intensified the need for the study of the response of non-uniform 

elastic systems under the action of moving loads. 

In most of the studies available in literature, see for example [17-30], the scope 

of the problem of assessing the dynamic response of a structural member under the 

passage of moving load has been limited to that of the beams with uniform cross 

section. Studies on the behaviour of non-prismatic elastic beam under the passage 

of moving load are not so common in literature. In few studies where non-uniform 

beam problems have been considered, the moving loads have been idealized as 

point-like. The problem of flexural vibration of non-uniform beam under moving 

loads was treated by Kolousek et al. [30]. They used normal-mode analysis to treat 

structure-load interaction problem. Much later, Oni and Omolofe, [31] investigated 

the dynamic behaviour of non-uniform Bernoulli-Euler beams subjected to concen-

trated loads travelling at varying velocities. In their study, they obtained analytical 

solution of the equation describing the motion and general behaviour of the vibrat-

ing system. Their result shows that for all variants of classical boundary conditions, 

the displacement of non-uniform Bernoulli-Euler beams subjected to concentrated 

loads travelling at varying velocities and transverse by moving masses decreases, 

as the values of both the foundation moduli and rotatory inertia correction factor 

increase. These works though impressive, the moving load involved in the govern-

ing equation of motions were model as concentrated load. 

However, in engineering practice moving loads are most often in the form of 

distributed mass over a small segment of the entire length of the structural member 

as the traverse the structure rather than that of moving lumped mass [32, 33]. When 

the moving load is distributed, the problem of investigating the load-structure  

interactions becomes much more complicated.  Thus, to study the dynamic charac-

teristics of such dynamical systems to the degree of acceptable accuracy required 

and also for practical purposes, it is useful to consider elastic structural members 

subjected to moving distributed loads. 

Thus, this work therefore concerns the problem of the dynamic response of non-

uniform elastic having time dependent boundary conditions and under the action of 

moving distributed.  Analytical procedures to obtain the solution of the governing 

equation will be developed and the effects of some vital structural parameters will 

be investigated. 

2. Mathematical model formulation 

Consider an elastic beam with a variable cross-section resting on elastic subgra-

de and carrying a mass M as shown in Figure 1. The beam properties such as the 

moment of inertia I, and the mass per unit length of the beam µ
 
vary along the 

span L. The mass M is assumed to strike the non-uniform beam at t = 0 and travels 
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along it with a constant velocity type of motion. The flexural motion of  

this vibrating system, is governed by the fourth order partial differential equation 

given as 

 
( )

( )
( )

( )
( )

( )
( )

( ) ( )
( ) ( ) ( )

2 2 32

2 2 2 2

2 2 2

2
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, , ,
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   ∂ ∂ ∂∂ ∂

+ − +   
∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂
= − − − + + 

∂ ∂ ∂ ∂ 

 (1) 

where: x  - the spatial is coordinate, t  is the time, ( ),Z x t
 
is the transverse dis-

placement, ( )EI x  is the variable flexural rigidity of the structure, Ro  is the rota-

tory inertia correction factor, K  is the foundation stiffness and g
 
is the accelera-

tion due to gravity, c is the constant velocity of the motion. ( )I x  and ( )xµ  
are 

variable moment of inertia and beam mass per unit lenght respectively. 

 
Z

x

travelling mass M

L

foundation reaction K

 

Fig. 1. Schematic diagram of non-uniform beam carrying uniformly distributed loads 

Adopting the example in [6], ( )I x  and ( )xµ  take the forms, 

 ( )
3

0
1 sin ,

x
I x I

L

π 
= + 

 
 ( )

3

0
1 sin

x
x

L

π
µ µ

 
= + 

 
 (2) 

where 
0
I and 

0
µ  are constants. 

The boundary conditions of the above equation (1) are taken to be the time de-

pendent, thus at each of the boundary points, there are two boundary conditions 

written as 

 
( ) ( )0,

j i
N Z t a t  =      

1,2i =   ( ) ( ),

j i
N Z L t a t  =     3, 4i =  (3) 

where 
j
N  are linear homogeneous differential operators of order less than or equal 

to three. 
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For instance, if the elastic beam is considered to be simply supported at both 

ends x = 0 and x = L then, 

 1
1N = , 

2

2 2
N

x

∂
=
∂

, 
3
1N =   and 

2

4 2
N

x

∂
=
∂

 (4) 

The initial conditions of the motion at 0t =  are specified by two arbitrary func-

tions. Thus, 

 ( ) ( )0
,Z x t Z x=  and  

( )
( )
0

,0Z x
Z x

t

∂
=

∂

ɺ  (5) 

Substituting equation (2) into equation (1), after some simplifications and rear-

rangements, leads to 
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  (6)  

2.1. Operational simplification 

The initial boundary value problem (6) consisting of a non-homogeneous partial 

differential equation with a non-homogeneous boundary conditions is transformed 

to a non-homogeneous partial differential equation with a homogeneous boundary 

conditions, using the  Mindlin and Goodman [34]. In other to solve above initial 

boundary value problem, we introduce the auxiliary variable ( ),U x t
 
in the form 

 ( ) ( ) ( ) ( )xgtatxUtxZ
i

i

i∑
=

+=

4

1

,,

 (7) 

Substituting equation (7) into the boundary value problem (6), transforms the 

latter into a boundary value problem in terms of ( ),U x t . The displacement influ-

ence functions ( )
i

g x s are chosen so as to render the boundary value problem in 

terms of ( )txU ,  
homogeneous.  Equation (6) in view of equation (7) after some 

simplifications yields 
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where over-dot represents the derivative with respect to time and the prime repre-

sents the derivative with respect to spacial coordinate. The expression in equation 

(7) must satisfy the boundary conditions in equation (3); consequently, we have 

 ( ) ( ) ( )( ) ( )
1

0, 0
n

j i i i i

m

N U t a t U g a t
=

 
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Substituting equation (7) into the initial conditions (5), one obtains 
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By Mindlin-Goodman method in [34], the boundary condition (9) and (10) in 

terms of ( ),U x t  can be made homogeneous if the functions ( )
i

g x s are chosen 

such that sixteen conditions given by 

( )0j i ij
N g δ  =   1, 2i =  1, 2, 3, 4j =  and ( )j i ij

N g L δ  =   
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where  
0,

1,ij

i j

i j
δ

≠
=  =

 (12) 

is the Kronecker delta j, are satisfied. 

Using equations (11) in the non-homogeneous boundary conditions (9) and (10) 

one obtains the homogeneous boundary conditions. 

 
( ) ( )0,

j i
N U t a t  =   

1, 2i =     ( ) ( ),

j i
N U L t a t  =   3, 4i =  (13) 

(8) 
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This dynamical system problem now reduces to that of solving the non-

homogeneous partial differential equation (8) subject to the homogeneous bounda-

ry conditions in (13) with the non-homogeneous initial conditions (10). 

3. Solution procedure 

This section seeks to obtain the solution of the transformed fourth order partial 

differential equation having some coefficients which are not only variable but are 

also singular. A general approach is developed in order to solve the initial value 

problem. The approach involves the use of the technique called generalized  

Galerkin method and the expression of the Heaviside function as a Fourier sine se-

ries to transformed the governing equation of motion. The transformed equation is 

further simplified using a method called Struble’s asymptotic method. 

The generalized Galerkin method requires that the solution of equation (8) be of 

the form 
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where ( )
m

X x  is chosen such that the pertinent boundary conditions are satisfied.  

Thus, substituting equation (14) into equation (8) after simplifications and rear-

rangements, leads to 
 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( )

0

1

1

2

02

1 1

0

2 3
2 10 6cos 15sin sin

4

6 2 3
4sin 5cos cos

3 2 3
8cos 5cos cos 1 sin

n

iv

m m

m

n

m m

m

n n

m m m m

m m

O m

EI x x x
Y t X x

L L L

x x x
Y t X x

L L L L

x x x x
Y t X x Y t X x

L L L LL

R X x

π π π

π π π π

π π π π π
µ

µ

=

=

= =

  
− + − +  

  

  ′′′+ + − ⋅ 
 

   ′′+ − − + +   
   

′′ ′′− +

∑

∑

∑ ∑ ɺɺ

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1

2

2

2

1

4

0

1

sin cos 2

2 3
10 6cos 15sin sin

4

6 2
4sin 5cos co

n n

m m m m m m m

m m

n

m m m m

m

iv

i i

i

x x x
X x X Y t MH x ct Y X x c Y X

L L L x

c Y t X K Y t X x
x

EI x x x
MgH x ct f t g x

L L L

x x

L L L

π π π

π π π

π π π

= =

=

=

 ∂ ′ ′+ + − +  ∂  

∂
′′+ +∂ 

   
= − − − + − +       

+ + −

∑ ∑

∑

∑

ɺɺ ɺɺ ɺ

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))

2

2

0 1 0 1

2

1 1

3 3 2 3
s 8cos 5cos cos

1 sin sin cos

2 0

i i

i i i i

i i i i i i

x x x x
g x g x

L L L LL

x x x x
f t g x f t g x g x g x

L L L L

MH x ct f t g x cf t g x c f t g x Kf t g x

π π π π π

π π π π
µ µ

   ′′′ ′′+ − −    
    

   ′′ ′′ ′+ + − + +   
   

 ′ ′′ + − + + + =

ɺɺ ɺɺ

ɺɺ ɺɺ

  (15) 
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In order to determine ( )
m

Y t , it is required that the expression on the left hand 

side of equation (15) be orthogonal to function ( )k
X x . Thus, multiplying equation 

(15) by ( )k
X x and integrating from x = 0 to x = L with respect to x, one obtains 
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i
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L
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M
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4
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2

i
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( ) ( ) ( ) ( ) ( ) ,

4

1 00

2

∑ ∫
=
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i

k
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dxxXxgutxHtf

Mc
tB
µ

( ) ( ) ( ) ( )∑ ∫
=

=

4

1 00 i

k

L

iis
dxxXxgtf

K
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µ

 (17) 

 

Since our beam has simple support at both ends x = 0 and x = L, we therefore 

choose the function; 

 ( ) sin
m

m

x
X x

L

λ
=  which implies ( ) sin

k

k

x
X x

L

λ
=  and ( ) sin

k

k

ct
X ct

L

λ
=  (18) 

and the frequency equations as 

 sin
m
xλ = sin

k
xλ , hence, 

m
xλ =

k
xλ  (19) 

Expressing the Heaviside function in Fourier sine series thus gives, 

 ( )
( ) ( )

1

sin 2 11 1

4 2 1
n

n x ct
H x ct

n

π

π

∞

=

+ −

− = +

+
∑  (20) 

4. Solutions of the transformed governing equations 

This section seeks the solution to the transformed equation (16). 

Substituting equations (18), (19) and (20) into equation (16) and after some 

simplifications and rearrangements yields. 
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )]

[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )] 0
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
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



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
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n
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πµ
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ɺɺɺɺɺ

 

(21) 

where: 

( ) ( )
1

2 2

1 4

2 1 1

mk
D L

m k m kπ

 
 = −
     − − − +

    

   

( ) ( )

2 2

2 1
2 2

2 1

1 1

kL m k

D L D

m k m kπ

  + −  = +
     − + − −

    

 (22) 
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( ) ( ) ( ) ( )
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π
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    = − + +             − − − + − − − +          

    + − + −      + − − +            − − − + − − − +         
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+

( ) ( ) ( ) ( )

4 2
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0

60 108
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21 1 9 9
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 
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 (23) 
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( ) ( ) ( )

( )( ) ( )

( ) ( )

( )( ) ( )

( )

( ) ( ) ( )

( )( ) ( )

( )

( )( ) ( )
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1

2
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1
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n

m
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m
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=
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=

  + − + − − + − +   = + −
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( ) ( ) ( ) ( ){ }
( )( ) ( )
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( )

2

3 2 2 22 2

1

2

2 2 22 2

1

2 1 1 cos 2 1 1 1 cos 2 1 1 cos 2 1

8 2 12 2 1 2 1

2 1 sin 2 1 1 1 sin 2 1

2 2 1 2 1

k m k m
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=
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  + − + − − + − +     = + −     +   + − + + − −  

  + + − − +
  − −
  + − − + − +  

∑

∑
2 1

ct

n





+ 

(26) 
 

At this juncture, it is pertinent to obtain the particular ( )
i

g x  that ensure zeros 

of the right hand sides of the boundary conditions for simply supported beam. In 

view of equations (11), the ( )
i

g x
 
are obtained for simply supported elastic beam 

with time dependent boundary conditions as, 

 ( )1
1

x
g x

L
= − , ( )

2

2

1

3 2 6

Lx x
g x

L
= − + − , ( )3

x
g x

L
=  and ( )4

6

Lx
g x = − , (27) 

it is only necessary to compute those ( )
i

g x  for which the corresponding ( )
i
a t  do 

not vanish. Thus, we need only ( )1
g x  and ( )3

g x  for our boundary displacement 

functions ( )1
a t  and ( )3

a t . In view of equations (27) above  

(25) 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0a b c d e f gB t B t B t B t B t B t B t= = = = = = =    

 ( ) ( ) ( ) ( ) ( ) ( ) 0h i j m n rB t B t B t B t B t B t= = = = = =  (28) 

while, 

 ( ) ( ) ( ) ( )( )1 1 3 1 2

1

k
B t a t J a t a t J

L
= + −ɺɺ ɺɺ ɺɺ   
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1
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L
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1

o
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
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
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∞
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∞
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p
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J

n
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k
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0
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where: 
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∫=
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1
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L
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∫=
0

2
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L

x
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0
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L
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L
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0
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L

x
J

L
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0
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L
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0
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( ) dx
L
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xnJ

L
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0
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π

π
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L
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0

7 sin12cos
π

π
, ( ) dx

L

xk
xnxJ

L

∫ +=

0
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π
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( ) dx
L
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L

∫ +=

0

9 sin12cos
π

π
, (32) 

Substituting equation (28) to (31) into equation (21) after some rearrangements 

and simplifications, one obtains, 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

* *

0 1 1 2 3

1

1 2 3 4 5 6 7

0

, ,
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MgL k x
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β β ε

π
π ε

µ π

=

 + + + + 

 
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 

∑ ɺɺ ɺɺ ɺ ɺ

 (33) 
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where: 

 ( )*
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,

m
m k D Ro D

L

π
β

 
= +  
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   ( ) ( )

( )
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2

k
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 ( ) ( ) ( )( )7 3 1

2
cos cos

c k ct
F t f t f t k

k L

π

π

π

 
= − − + 

 
ɺ ɺ  (39) 

Equation (33) represents the transformed equation of the non-uniform elastic 

beam simply-supported at both ends and having boundary and initial conditions 

which is time dependent. In what follows, we shall discuss two special cases of the 

equation (33) namely; the moving force and the moving mass problems. 

(38) 
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4.1. The moving force load-beam interaction problem 

By setting 0ε =   in equation (33), an approximate model of the governing dif-

ferential equation describing the response of a non-uniform, elastic beam traversed 

by a moving force would be obtained. 

Thus, setting 0ε =   in equation (33), yields 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )2
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0

1
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m mf m
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 
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where, 
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=

 

(41) 

Now, one considers a beam whose end 0x = , (say) is subjected  to a sine-wave 

(undamped) transient displacement, starting from rest and the other end x L= , is 

subjected to a damped sine wave transient displacement starting from rest. Thus, 

 ( )1
sinf t B t= Ω  and ( )3

sin
t

f t A B t
β−

= Ωℓ  (42) 

where A, B are amplitudes,Ω  is the frequency and β  is a parameter. Substituting 

( )1
a t , ( )3

a t  ( )1
g x  and ( )3

g x in the initial conditions (5), one obtains  

 ( ),0 0Z x =  and  
( ), 0Z x

t

∂
= −Ω

∂
 (43) 

When equations (42) and (43) are substituted into (40) after simplifications and 

rearrangements, one obtains 
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where, 
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Using the integral transformation technique to treat (47) in conjunction with the 

initial conditions (5) gives, 
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which when substituted into equation (14) gives 

 

( )
( )

( )
( )

( ) ( ){ }

{ } { }

0 8

12 2 2 2

1

1

10 1 9 2 10 3 9 4 0

0

10 2 9 1 9 1 9 1

0

, cos cos sin sin

1
sin 1 1 sin

cos cos

cos

n

mf mf

m mfmf mf

kt

mf

mf

t

mf

A L Jf
U x t k t t t t

k k

L
Jf q Jf q t Jf q Jf q q t

q k

Jf q Jf q t Jf q Jf q t

k
A

β

β

γ γ
γγ γ

β β γ
γ π

β γ β

=

+
−

−

  Ω
= − + Ω −   − −  

Ω  
+ + Ω + + + + −  

  

+ − + − Ω

+

∑

ℓ

ℓ

{ }
2

cos 1 sin m
mf

m

x
t

L

π λ
γ

α

  
− ⋅  

 

 (49) 

where 

         
1

k c
k

L

π

= , ( )2 2 2 2 2

0
4

m m
q β= Ω + Ω + − Ω Ω ,

  ( )2 2 2

1 m
q β= Ω −Ω + ,     

       
    2

2 mfq γ= − Ω
, 

2

3 mfq β γ = − + Ω  , ( )2 2

4 mfq γ β= +Ω +  (50)  

But from equation (7) we have 

 ( ) ( ) ( ) ( )
4

1

, ,

i i

i

Z x t U x t a t g x
=

= +∑  (51) 

Consequently, 

 ( ) ( ) ( ), , sin 1 sin
t

x
Z x t U x t t t

L

β−
= + Ω + − Ωℓ  (52) 

Equation (52) represents the dynamic response to moving distributed forces of 

non-uniform elastic beam whose two simply-supported edges undergo displace-

ments which vary with time. 
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4.2. The moving mass load-beam interaction problem 

If the mass of the moving load is commensurable with that of the structure the 

inertia effect of the moving mass is considered not negligible. In this case, 0ε ≠  

and the solution to the entire equation (33) is required. Thus, we resort to the  

asymptotic Struble method of extensively discussed in [5, 7]. To this effect, equa-

tion (33) is rearranged to take the form, 
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where  
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and ( )5
F t , ( )6

F t , ( )7
F t  are as defined in equations (37), (38) and (39).  

By Struble technique, the LHS of equation (53) is simplified to take the form 
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where  
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is called the modified natural frequency representing the frequency of the free sys-

tem due to the presence of the moving mass, thus, in view of equation (55), equa-

tion (53) becomes, 
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Solving equation (57) above again using integral transformation technique in 

conjunction with initial conditions (5), the expression for ( )
m

Y t  is obtained and 

substituted into (14) and consequently, one obtains 

 ( ) ( ) ( ), , sin 1 sin
t

x
Z x t U x t t t

L

β−
= + Ω + − Ωℓ  (58) 

Equation (58) represents the dynamic response to moving distributed masses of 

the non-uniform beam whose two simply-supported edges undergo displacements 

which vary with time. 

5. Discussion of the analytical solutions 

Occurrence of a resonance phenomenon is investigated in this section. Equation 

(52) clearly shows that the simply supported elastic beams transverse by a moving 

force will be in state of resonance whenever 

 
mf

m c

L

π
γ =  (59) 

While equation (58) shows that the same beam under the action of moving mass 

experiences resonance effect when  

 
mm
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From equation (56) 

 

( ) ( )
( )

22

*

0
16 ,

mf

mm mf

mf

cm L

L m k

π γ
γ γ λ

γ β
=

  +
  −
  

  

 (61) 

This implies 
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 (62) 

Evidently, from (59) and (61), for the same natural frequency, the critical speed 

for the system consisting of a simply supported elastic beam on a Winkler founda-

tion and traverse by moving distributed force with uniform speed is greater than 

that of moving distributed mass problem. Thus, resonance is reached earlier in the 

moving mass system than in the moving force system. 
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6. Numerical calculations and discussion of results 

In order to illustrate the foregoing analysis and results obtained for the dynam-
ical system in discussion, a simply supported non-uniform beam of length  
L = 12.192 m is considered. It is assumed that the mass travels at the constant  
velocity c = 8.123 m/s. Furthermore, the value for E is chosen to be 
2.109x10

9 
kg/m

2
. For various values of the foundation moduli K, and the rotatory 

inertia correction factor Ro , the deflections of the simply supported beam are cal-
culated and plotted against time t.  

Figures 2 and 5 display the effect of rotatory inertia correction factor Ro  on the 
transverse deflection of the simply supported beam in both cases of moving force 
and moving mass respectively. The graphs show that the response amplitude de-
creases as the values of the rotatory inertia increases for fixed values of the founda-
tion moduli K = 4 000 000 N/m

3
. 

Also, Figures 3 and 6 show the deflection profile of the simply supported beam 
for moving force and moving mass respectively for various values foundation 
modulus K and for fixed value of 5Ro = . It is shown from the figures that as the 
values of K increases the deflection of the beam decreases. Figure 4 displays the 
transverse displacement response of a simply supported non-uniform beam with 
time dependent boundary conditions under the action of distributed forces for vari-
ous values of position coordinates x and for fixed values of foundation modulus  
K = 4 000 000 and rotatory inertia correction factor Ro = 5. The figure shows that 
as position coordinates X increases, the dynamic deflection of the non-uniform 
beam increases.  

 

 

Fig. 2. Deflection profile of a non-uniform simply supported elastic beam to moving 

force for different values of rotatory inertia Ro fixed values of foundation modulus  

K = 4 000 000 
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Fig. 3. Transverse displacement response of simply supported non-uniform elastic beam  

under a moving force for various values of foundation moduli K and fixed value rotatory 

inertia Ro = 4 

 

 
Fig. 4. Deflection profile of a non-uniform simply supported elastic beam under moving 

force for various values of load position x 
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Fig. 5. Transverse displacement response of simply supported non-uniform elastic beam 

under a moving mass for various values of rotary inertia Ro and fixed value  

of foundation moduli K = 4 000 000 

 

 

Fig. 6. Transverse displacement response of simply supported non-uniform elastic beam 

under a moving mass for various values of foundation moduli K and fixed value rotatory 

inertia Ro = 4 
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Fig. 7. Deflection profile of a non-uniform simply supported elastic beam under moving 

mass for various values of load position x 

 

 

Fig. 8. Deflection profile of a non-uniform simply supported elastic beam under moving 

mass for various values of the mass ratio 
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Fig. 9. Comparison of the deflection profiles of the moving force and moving mass  

models for fixed values of foundation moduli K = 4 000 000 and rotatory inertia Ro = 4 

Similarly, Figure 7 displays the transverse displacement response of a simply 

supported non-uniform elastic beam with time dependent boundary conditions un-
der the action of distributed  masses for various values of position coordinates and 

for fixed values of foundation modulus K = 4 000 000 and rotatory inertia correc-

tion factor Ro = 5. The result shows that as position coordinates x increases, the 

dynamic deflection of the non-uniform beam increases. For various traveling time 

t, the deflection profile of the beam for various values of mass ratio and for fixed 

values of foundation modulus K = 4 000 000 and rotatory inertia correction factor 

Ro = 5 are shown in Figure 8. It is observed that as the mass ratio increases the  

deflection of the vibrating beam increases. Figure 9 compares the displacement 

curves of the moving force and moving mass for a simply supported beam with  

foundation modulus K = 4 000 000 N/m
3
 and rotatory inertia correction  

factor Ro = 5. 

7. Concluding remarks 

The problem of transverse motion of a non-uniform beam with time-dependent 

boundary conditions when under the actions of travelling distributed masses has 

been scrutinized. The Mindlin and Goodman’s technique is first applied to trans-

form the governing non-homogeneous fourth order partial differential equations 

with non-homogeneous boundary conditions into non-homogeneous fourth order 

partial differential equations with homogeneous boundary conditions. The resultant 

transformed equation is further treated using the versatile the generalised Galerkin 
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method with the series representation of the Heaviside function and a modification 

of asymptotic Struble method. Analytical solutions of the governing fourth order 

partial differential equations with variable and singular coefficients of the struc-

ture-mass interaction problem are presented. Illustrative example involving a vari-

able cross-section slender member with simple supports at both ends is presented. 

The solutions hitherto obtained are analyzed and resonance conditions for this dy-

namical beam-mass system are established. It is found that as the values of founda-

tion subgrade K increases the deflection of the beam decreases. This is also true for 

all other beam parameters used in this work. The higher the value of the mass ratio, 

the larger the deflection of the beam.  This is also true of the load position. Various 

results obtained in this study are in perfect agreement with existing results in litera-

tures are quite useful in design engineering and other related fields. 

Nomenclature 

E  [N/m
2
] Modulus of elasticity 

( )xµ  [kg/m] Beam Variable Mass per unit length 

Ro  [m] Rotatory inertia correction factor 

M  [kg]  Mass of the moving load 

i
g    Displacement influence function 

Θ   Differential operator 

( )
m

Y t   [m] Unknown function of time 

L  [m] Length of the beam 
2

mm
γ   Modified natural frequency 

( )I x   [m
4
] Variable moment of inertia 

Z(x,t)  [m] Beam displacement 
K  [N/m

3
] Foundation stiffeness 

C  [m/s] Speed of the moving load 

ij
δ   Kronecker delta 

j
Ψ   Beam modes 

g   [m/s
2
] Acceleration due to gravity 

2

mfγ  [Hz] Natural frequency 

( )
m

X t   Normalized deflection curves for the i
th
 mode of the vibrating beam 
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