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Abstract:
The paper presents results of application of various right 
inverses to fractional-order discrete-time perfect con-
trol in terms of improving its stability and robustness. 
For that reason the newly introduced σ-inverse and 
H-inverse are applied finally to obtain the mentioned 
above control strategy strictly dedicated to LTI MIMO 
nonsquare systems described by state-space frame-
work. It is highlighted that parameter σ-inverse and 
H-inverse with different so called ‘degrees of freedom’ 
outperform the typical minimum-norm right T-inverse. 
Moreover, this new approach deals with the same class 
of problems concerning integer-order systems. The sim-
ulation studies performed in Matlab/Simulink environ-
ment confirm high potential of proposed here method. 

Keywords: LTI MIMO fractional-order systems, perfect 
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1. Introduction 
The issues concerning the stability and robust-

ness of LTI MIMO integer-order discrete-time systems 
in state-space domain are subject to more and more 
intensive scientific exploration [2, 4, 5, 9, 10]. The 
search of various methods to increase robustness of 
perfect control for such systems is being conducted 
in particular in order to obtain new classes of right 
inverses [4, 5]. Until now, the mostly used and widely 
presented in the literature is minimum-norm right T-
inverse [2 , 3, 6, 7, 8]. T-inverse considered, however, 
as the “minimum-energy” inverse, cannot be used to 
wide class of cases where the control inputs remain 
unstable under perfect control law. The powerful 
tools that can be applied to mentioned class of prob-
lems are recently introduced s-inverse and H-inverse 
with different types of so-called degrees of freedom 
[2,4,5,9]. It is interesting that the first inverse consti-
tutes an extension of minimum-norm right T-inverse 
in which degrees of freedom are organized as the 
separate matrices being both in parameter as well as 
polynomial form. On the other hand, the second men-
tioned inverse based on well-known SVD factoriza-
tion. That approach gives the opportunity to impact 
on the perfect control strategy by influencing matri-
ces obtained from SVD factorization in form of param-
eter or polynomial degrees of freedom as well. In the 

paper mentioned above tools previously employed to 
integer-order systems are transferred to fractional-
order perfect control for LTI MIMO discrete-time sys-
tems. It is remarkable that the concept of engaging 
the inverses of parameter matrices to increasing the 
robustness of discrete-time fractional-order perfect 
control structures in state-space is a new and original 
authors’ idea, not presented so far.

The paper is, therefore, an attempt to synthesis 
of discrete-time fractional-order perfect control with 
regard of its stability and robustness. To obtain that 
objective, the recently devised fractional-order mul-
tivariable discrete-time perfect control algorithm, in 
particular dedicated to the so-called nonsquare sys-
tems, i.e. systems with different numbers of input and 
output variables, is used [1]. The simulation studies of 
perfect control involve parameter σ-inverse [4, 9] and 
parameter H-inverse [5, 11]. The results of research 
conducted in Matlab/Simulink environment show 
that utilization of appropriate inverse machinery may 
determine stability and, as a consequence, minimum 
phase property of the non-integer systems. The para-
digm adapted from integer-order calculus, still need 
to be proved, which as is worth of scientific effort, be-
come the aim future research.

The paper is organized in following manner. In 
Section 2 the fractional-order system representa-
tion is presented. Next section outlines the notion 
of fractional-order perfect control strictly dedicated 
to LTI MIMO discrete-time systems defined in state- 
space framework. The newly introduced nonunique 
s-inverse and H-inverse are shortly presented in Sec-
tion 4. An application of touched in previous section 
parameter right inverses into fractional-order perfect 
control algorithm is shown in Section 5. Simulation 
studies in Section 6 indicate the contribution of the 
new idea to increasing non-integer order perfect con-
trol robustness property in terms of stability. Final 
conclusions are given in the last section of the paper.

2. System Representation
Consider a linear time-invariant (LTI) discrete 

fractional-order system S(Ad, B, C) with nu-inputs 
u(k), ny-outputs y(k) and state vector x(k) described 
by the following equations

  (1)

where k represents the discrete time, Δα is the Grün-
wald–Letnikov fractional difference operator of order 
α (with 0<α<2) in form of
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  (2)

whilst

  (3)

Note that Ad = A – In, where A is the n×n-state 
matrix of integer-order system and In denotes the 
identity n-matrix.

 
3. Fractional-Order Perfect Control Algorithm

Let us consider discrete-time fractional-order sys-
tem described by formulas (1–3). After minimizing 
the performance index

  (4)

where y(k+1) and yref(k+1) are the one-step deter-
ministic output predictor and the output reference/
setpoint, respectively, we obtain the fractional-order 
perfect control law [1]
   
  

  .	 (5)

In further study we will touch only the case where 
product of CB is right-invertible. Thus, index ‘#’ in 
Eqn. (5) is replaced by index ‘R’, which designates 
any nonunique right inverse (including the unique 
minimum-norm right inverse also known as T-inverse 
[2, 3]). Therefore in the next section the crucial nonu-
nique parameter σ-inverse and H-inverse are present-
ed in order to obtain a robust fractional-order perfect 
control algorithm.

4. Inverses of Nonsquare (Parameter) 
Matrices
Let start our consideration with definitions of the 

classical minimum-norm T-inverses  (in the 
backward shift operator domain) being of full rank or 
non-full rank with dimension ny×nu, respectively.

Definition 1 ([2]). Let the polynomial matrix 

 be of full rank 
ny (or nu). The (unique) minimum-norm right (or 
least square left) T-inverse of  is defined 
as  (or 

).

Definition 2 ([2]). Let the polynomi-
al matrix  
of non-full normal rank r be skeleton-fac-
torized as , where 

  
. The (unique) Moore-Penrose 

T-inverse of  is defined as , 

where  and 
 .

Remark 1. The system taken into account in our 
considerations is parameter system and constitutes 
a special case of polynomial one i.e. for . 

An extension of mentioned above unique right 
T-inverse of full normal rank is nonunique right 
σ-inverse including degrees of freedom. The newest 
definition of σ-inverse can be find in Ref. [9] in form 
of Corollary 1.

Corollary 1 ([9]). Let the polynomial 
 be of full normal 

rank ny (or nu) and let 
of full normal rank ny (or nu) be arbitrary order s. 
Assume additionally that the product  
is of full normal rank ny (or nu). Then an old form of 
σ-inverse (see [2], p. 57, Eqn. (5.3)) can be equivalently 
redefined as .

Remark 2. Naturally, the presented polynomial 
matrix right σ-inverse reduces to the parameter one 
(for ) as follows

  , (6)

with parameter degrees of freedom β. Some issues 
concerning β having polynomial matrices can be 
found in Ref. [9].

Remark 3. For  s-inverse spe-
cializes to T-inverse.

Remark 4. It is clear now that in Eqn. (6) it 
should rather be written  instead of , 
as well as B instead of .

Finally, the recently introduced non-unique pa-
rameter right H-inverse based on SVD factorization is 
shown below.

Theorem 1 ([11]). Consider an m×n matrix A 
being of full rank m under the SVD decomposition 
A =  , where U and V are unitary matrices and 

 includes eigenvalues 
of A. Then the right matrix H-inverse of A can be  
given as
 ,	 (7)

where  whilst  
 

 is an arbitrary matrix polynomial 
in the backward shift operator domain.

Remark 5. As it is in preceding cases, the 
presented polynomial matrix L(q–1), including degrees 
of freedom, can be reduced to the parameter one L. 

Having the needed notion of polynomial inverses 
and their parameter representations, we are able 
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to proceed with the implementation of T-, σ- and H- 
inverses into the fractional-order perfect control law 
as in Eqn. (5), which is a subject of subsequent section.

5. An Application of Parameter Matrix Right 
Inverses into Fractional-Order Perfect 
Control Law
Starting to consider the implementation outlined 

in former section right inverses we have to assume 
that the product of CB is of full rank. For CB being of 
non-full rank the perfect control does not exist.

Firstly, we take into account the classical minimum-
norm T-inverse. It is important to note, that minimum-
norm T-inverse stand for a special case of more general 
one related to s-inverse (see Remark 3). Therefore, 
regarding Eqn. (5), the fractional-order perfect control 
formula for LTI MIMO discrete-time systems in state-
space can be presented in following form

  

  .	 (8)

Secondly, to implement s-inverse, we rewrite the 
Eqn. (5) according to Corollary 1 with corresponding 
remarks as follows

  

  ,	 (9)

with parameter matrix β (of ny× nu dimension). 
Eventually, the SVD-based H-inverse formula 

defined in Theorem 1 is applied to Eqn. (5). Therefore, 
we obtain related to H-inverse the fractional-order 
perfect control law in succeeding form
   
  

  (10)

Remark 6. According to the issues mentioned in 
Section 3 the product of CB has to be right invertible. 
For left invertible systems, i.e. systems comprising 
more output than input variables, the fractional-order 
perfect-control cannot be established.

Note that used in non-integer order perfect control 
problems the minimum-norm T-inverse in many 
cases may make the whole control system unstable. 
Therefore, in perfect control robustness research 
study (in terms of stability) there is a need to employ 
other non-unique inverses, for example said σ-inverse 
or H-inverse implemented in formulas (9) and (10). 
In fact, the application of the other right inverses 
could be connected with the problem of control zeros 
placement [2, 3] and finally with the issue of selecting 
the appropriate right inverse degrees of freedom. 
The problem of stability of multivariable fractional-
order perfect control systems is illustrated in the next 
section by the complex simulation examples related 
to parameter σ-inverse and H-inverse. 

6. Simulation Example
Consider an LTI MIMO discrete-time fractional-

order system with three-inputs and two-outputs de-
scribed by Eqns. (1–3) as follows

  
   

(11)
  

  
,
  

and initial state vector 

Employing the unique T-inverse to product of CB 
(β = CB in Eqn. (6)) for α = 0.5, we obtain, not presented 
here, unstable fractional-order perfect control 
described by Eqn. (8). Now the drawback of T-inverse 
due to the lack of possibility of influencing the non-
integer order prefect control stability by choosing 
degrees of freedom can be corrected through the 
application of said σ-inverse or H-inverse to system 
(11). This intriguing property of aforementioned 
inverses is presented below.

6.1. Parameter -inverse
After application of special selected de-

grees of freedom in form of parameter matrix 

 we obtain asymptoti- 
 
cally stable non-integer perfect control (see Eqn. (9)) 
depicted in Fig. 1. It should be noted that degrees of 
freedom can be chosen by using of some criterion for 
example minimum-energy gauge, which will be the 
subject of future research. Asymptotically stable state 
vector is illustrated in Fig. 2.

 0 10 20 30 40 50 60 70 80 90 100
-50

-40

-30

-20

-10

0

10

20

30

40

50

k

u(k)

 

 
u1
u2
u3

Fig. 1. Fractional-order perfect control: asymptotically 
stable u(k) (case: σ-inverse with βstab)
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6.2. Parameter H-inverse
Finally, let us introduce our new parameter 

H-inverse into the fractional-order perfect control. 
For that reason it is necessary to use Eqn. (10) with 
degrees of freedom, selected as in previous subsection 
6.1, contained in parameter matrix Lstab. Thus, for

  

   

  

and Lstab=[–7.0141 –4.8498] we obtain the asymp-
totically stable fractional-order perfect control u(k) 
and asymptotically stable state vector x(k) shown in 
Figs. 3 and 4, respectively.
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Fig. 2. Fractional-order perfect control: asymptotically 
stable x(k) (case: σ-inverse with βstab)
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Fig. 3. Fractional-order perfect control: asymptotically 
stable u(k) (case: H-inverse with Lstab)
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Fig. 4. Fractional-order perfect control: asymptotically 
stable x(k) (case: H-inverse with Lstab)
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Fig. 5. Fractional-order perfect control: stable y(k) (case: 
T-inverse, σ-inverse with βstab and H-inverse with Lstab)

It is obvious that in all cases, i.e. stable and unsta-
ble ones, after time delay k ≥ d = 1, the output remains 
at the reference/setpoint yref=[1 1]T, which is the main 
property of MV/prefect control strategies (see Fig. 5).

7. Conclusions
In the paper the application of s-inverse and H-

inverse into the problem of fractional-order perfect 
control for systems comprising different numbers of 
inputs and output variables has been given. The non-
unique inverses have been employed here to design 
the robust structures of mentioned control strategy, 
in particular in terms of their stability. It has been 
shown that σ-inverse and H-inverse are able to sta-
bilize fractional-order perfect control in the cases 
where the application of the classical minimum-norm 
right T-inverse lead to the unstable control systems. 
Simulation examples conducted in Matlab/Simulink 
environment under the authors’ complex procedure, 
confirm the significant potential of whole presented 
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in the paper inverse machinery. The future study will 
be focused on search of the analytical proofs of car-
ried out simulation tasks.
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