PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geochemical analysis for palaeoenvironmental interpretations : a case study of the English Wealden (Lower Cretaceous, south-east England)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The elemental composition of terrigenous sediments is extremely important for interpreting the depositional conditions of sedimentary basins especially when traditional data are not available or insufficient. For the first time in the published literature, the elemental composition of the Lower Cretaceous Weald Basin (south-east England) is presented via X-ray fluorescence (XRF) and Spectral Gamma-ray (SGR) methods. The concentrations of Zr, Cr, Ni, Rb, and Sr in varying quantities suggest that the sediments may have been sourced from a stable craton while the enriched redox-sensitive elements such as Mo and Co confirm the presence of anoxic and reducing conditions at the sites of deposition. The spectral gamma-ray data show that the sandstone facies are more radioactive than the adjacent mudstone and shale and this trend is consistent with a freshwater origin. The higher quantity of thorium in relation to uranium indicates humid and hot palaeoclimatic conditions at the source areas that favoured intense weathering. The results of these analyses reinforce the importance of the geochemistry of sedimentary rocks as useful tools for understanding the depositional conditions of sedimentary basins.
Rocznik
Strony
227--238
Opis fizyczny
Bibliogr. 84 poz., rys., tab., wykr.
Twórcy
autor
  • University of Brighton, School of Environment and Technology, Lewes Road, Brighton, BN2 4GJ, UK
Bibliografia
  • 1. Abanda, P.A., Hannigan, R.E., 2006. Effect of diagenesis on trace element partitioning in shales. Chemical Geology, 230: 42-59.
  • 2. Akinlotan, O.O., 2015. The Sedimentology of the Ashdown Formation and the Wadhurst Clay Formation, Southeast England. Ph.D. thesis, University of Brighton, United Kingdom.
  • 3. Algeo, T.J., Rowe, H., 2012. Paleoceanographic applications of trace-metal concentration data. Chemical Geology, 324-325: 6-18.
  • 4. Allen, P., 1975. Wealden of the Weald: a new model. Proceedings of the Geologists' Association, 86: 389-437.
  • 5. Allen, P., 1981. Pursuit of Wealden models. Journal of the Geological Society, 138: 375-405.
  • 6. Allen, P., 1989. Wealden research - ways ahead. Proceedings of the Geologists' Association, 100: 529-564.
  • 7. Allen, P., 1991. Provenance research: Torridonian and Wealden. Geological Society Special Publications, 57: 13-21.
  • 8. Allen, P., Wimbledon, W.A., 1991. Correlation of NW European Purbeck-Wealden (nonmarine Lower Cretaceous) as seen from the English type-areas. Cretaceous Research, 12: 511-526.
  • 9. Alvarez, C.N.O., Roser, B.P., 2007. Geochemistry of black shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: source weathering, provenance, and tectonic setting. Journal of South American Earth Sciences, 23: 271-289.
  • 10. Andre, L., 1991. The concealed crystal i ine basement in Belgium and the 'Brabantia' microplate concept: constraints from the Caledonian magmatic and sedimentary rocks. Annales de la Société Geologique de Belgique, 114: 117-139.
  • 11. Anjos, S.M.C., Carozzi, A.V., 1988. Depositional and diagenetic factors in the generation of the Santiago arenite reservoirs (Lower Cretaceous): Aragás oil field, Recôncavo Basin, Brazil. Journal of South American Earth Sciences, 1: 3-19.
  • 12. Bahrig, B., 1989. Stable isotope composition of siderite as an indicator of the paleoenvironmental history of oil shale lakes. Palaeogeography, Palaeoclimatology, Palaeoecology, 70: 139-151.
  • 13. Bhatia, M.R., 1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91: 611-627.
  • 14. Bhatia, M.R., Crook, K.A., 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92:181-193.
  • 15. Booth, K., 2005. Geological investigation of the Ashdown Beds at Fairlight, East Sussex. British Geological Survey, Commercial Report, CR/05/040N.
  • 16. Browne, G.H., Kingston, D.M., 1993. Early diagenetic spherulitic siderites from Pennsylvanian palaeosols in the Boss Point Formation, Maritime Canada. Sedimentology, 40: 467-474.
  • 17. Brumsack, H.-J., 2006. The trace metal content of recent organic carbonrich sediments: implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232: 344-361.
  • 18. Chen, S., Wang, H., Wei, J., Lv, Z., Gan, H., Jin, S., 2014. Sedimentation of the Lower Cretaceous Xiagou Formation and its response to regional tectonics in the Qingxi Sag, Jiuquan Basin, NW China. Cretaceous Research, 47: 72-86.
  • 19. Dickinson, W.R., 1985. Interpreting provenance relations from detrital modes of sandstones. In: Provenance of Arenites (ed. G.G. Zuffa): 333-361. Reidel, Dordrecht.
  • 20. Dickinson, W.R., Suczek, C.A., 1979. Plate tectonics and sandi stone compositions. AAPG Bulletin, 63: 2164-2182.
  • 21. Eker, C.S., Sipahi, F., Kaygusuz, A., 2012. Trace and rare earth elements as indicators of provenance and depositional environments of Liascherts in Gumushane, NE Turkey. Chemie der Erde - Geochemistry, 72: 167-177.
  • 22. Elbaz-Poulichet, F., Seidel, J.L., Jézéquel, D., Metzger, E., Prévot, F., Simonucci, C., Sarazin, G., Viollier, E., Etcheber, H., Jouanneau, J.-M., Weber, O., Radakovitch, O., 2005. Sedimentary record of redox-sensitive elements (U, Mn, Mo) in a transitory anoxic basin (the Thau lagoon, France). Marine Chemistry, 95: 271-281.
  • 23. Ferreira, N.N., Ferreira, E.P., Ramos, R.R.C., Carvalho, I.S., 2016. Palynological and sedimentary analysis of the Igarapé Ipiranga and Querru 1 outcrops of the Itapecuru Formation (Lower Cretaceous, Parnaíba Basin), Brazil. Journal of South American Earth Sciences, 66: 15-31.
  • 24. Fitton, W.H., 1824. Inquiries respecting the geological relations of the Beds between the Chalk and the Purbeck Limestone in the south east of England. Annals of Philosophy, 8: 365-383.
  • 25. Föllmi, K.B., 2012. Early Cretaceous life, climate and anoxia. Cretaceous Research, 35: 230-257.
  • 26. Garnit, H., Bouhlel, S., Barca, D., Chtara, C., 2012. Application of LA-ICP-MS to sedimentary phosphatic particles from Tunisian phosphorite deposits: Insights from trace elements and REE into paleo-depositional environments. Chemie der Erde - Geochemistry, 72: 127-139.
  • 27. Garrido, A.C., Salgado, L., 2015. Taphonomy and depositional environment of a Lower Cretaceous monospecific dinosaur bone assemblage (Puesto Quiroga Member, Lohan Cura Formation), Neuquén Province, Argentina. Journal of South American Earth Sciences, 61: 53-61.
  • 28. Ghasemi-Nejad, E., Ardakani, E.P., Ruffell, A., 2010. Palaeoclimate change recorded in Upper Cretaceous (Albian-Cenomanian) Kazhdumi Formation borehole spectral gamma-ray logs, South Pars Gas field, Persian Gulf. Palaeogeography, Palaeoclimatology, Palaeoecology, 291: 338-347.
  • 29. Goldring, R., Pollard, J.E., Radley, J.D., 2005. Trace fossils and pseudofossils from the Wealden strata (non-marine Lower Cretaceous) of southern England. Cretaceous Research, 26: 665-685.
  • 30. González-Álvarez, I., Kerrich, R., 2010. REE and HFSE mobility due to protracted flow of basinal brines in the Mesoproterozoic Belt-Purcell Supergroup, Laurentia. Precambrian Research, 177: 291-307.
  • 31. Hallam, A., 1984. Continental humid and arid zones during the Jurassic and Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 47: 195-223.
  • 32. Hallam, A., Grose, J.A., Ruffell, A.H., 1991. Palaeoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France. Palaeogeography, Palaeoclimatology, Palaeoecology, 81: 173-187.
  • 33. Hopson, P., Wilkinson, I., Woods, M., 2008. A stratigraphical framework for the Lower Cretaceous of England. British Geological Survey Research Report, RR /08/03.
  • 34. Huber, N.K., 1958. The environmental control of sedimentary iron minerals. Economic Geology, 53: 123-140.
  • 35. Jenkins, R., 1974. An Introduction to X-ray Spectrometry. Heyden, London.
  • 36. Jenkins, R., Gould, R.W., Gedcke, D., 1982. Quantitative X-ray spectrometry. Journal of Applied Crystallography, 15: 329-362.
  • 37. Jiang, B., Sha, J., 2007. Preliminary analysis of the depositional environments of the Lower Creiaceous Yixian Formation in the Sihetun area, western Liaoning, China. Cretaceous Research, 28: 183-193.
  • 38. Jiang, S.-Y., Zhao, H.-X., Chen, Y.-Q., Yang, T., Yang, J.-H., Ling, H.-F., 2007. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu province, China. Chemical Geology, 244: 584-604.
  • 39. Ju, W., Sun, W., 2016. Tectonic fractures in the Lower Cretaceous Xiagou Formation of Qingxi Oilfield, Jiuxi Basin, NW China Part two: numerical simulation of tectonic stress field and prediction of tectonic fractores. Journal of Petroleum Science and Engineering, 146: 626-636.
  • 40. Kirkaldy, J.F., 1939. The history of the Lower Cretaceous period in England. Proceedings of the Geologists' Association, 50: 379-417.
  • 41. Kirkaldy, J.F., 1947. The provenance of the pebbles in the Lower Cretaceous Rocks. Proceedings of the Geologists' Association, 58: 223-241.
  • 42. Lake, R.D., Shephard-Thorn, E.R., 1987. Geology of the Country Around Hastings and Dungeness. HM Stationery Office, London.
  • 43. Lake, R.D., Thurrell, R.G., 1974. The Sedimentary Sequence of the Wealden Beds in Boreholes near Cuckfield, Sussex. HM Stationery Office, London.
  • 44. Lake, R.D., Young, B., 1978. Boreholes in the Wealden Beds of the Hailsham Area, Sussex. HM Stationery Office, London.
  • 45. Lee, R., McConchie, D., 1982. Comprehensive major and trace element analysis of geological material by X-ray fluorescence, using low dilution fusions. X-Ray Spectrometry, 11: 55-63.
  • 46. Legarreta, L., Kokogián, D.A., Boggetti, D.A., 1989. Depositional sequences of the Malargue Group (Upper Cretaceous-lower Tertiary), Neuquén Basin, Argentina. Cretaceous Research, 10: 337-356.
  • 47. Li, X., Xu, W., Liu, W., Zhou, Y., Wang, Y., Sun, Y., Liu, L., 2013. Climatic and environmental indications of carbon and oxygen isotopes from the Lower Cretaceous calcrete and lacustrine carbonates in Southeast and Northwest China. Palaeogeography Palaeoclimatology, Palaeoecology, 385: 171-189.
  • 48. Lipinski, M., Warning, B., Brumsack, H.-J., 2003. Trace metal signatures of Jurassic/Cretaceous black shales from the Norwet gian Shelf and the Barents Sea. Palaeogeography Palaeoclimatology, Palaeoecology, 190: 459-475.
  • 49. Marques, R., Prudéncio, M.I., Dias, M.I., Rocha, F., 2011. Patterns of rare earth and other trace elements in different size fractions of clays of Campanian-Maastrichtian deposits from the Portuguese western margin (Aveiro and Taveiro Formations). Chemie der Erde - Geochemistry, 71: 337-347.
  • 50. McLennan, S.M., Taylor, S.R., Eriksson, K.A., 1983. Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia. Geochimica et Cosmochimica Acta, 47: 1211-1222.
  • 51. Pe-Piper, G., Triantafyllidis, S., Piper, D.J., 2008. Geochemical identification of clastic sediment provenance from known sources of similar geology: the Cretaceous Scotian Basin, Canada. Journal of Sedimentary Research, 78: 595-607.
  • 52. Pi, D.-H., Jiang, S.-Y., Luo, L., Yang, J.-H., Ling, H.-F., 2014. Depositional environments for stratiform witherite deposits in the Lower Cambrian black shale sequence of the Yangtze Platform, southern Qinling region, SW China: evidence from redox-sensitive trace element geochemistry. Palaeogeography Palaeoclimatology, Palaeoecology, 398: 125-131.
  • 53. Radley, J.D., Allen, P., 2012. The Wealden (non-marine Lower Cretaceous) of the Weald Sub-basin, southern England. Proceedings of the Geologists'Association, 123: 245-318.
  • 54. Rawson, P.F., 1992. The Cretaceous. In: Geology of England and Wales (eds. P.M.D. Duff and A.J. Smith): 355-388. Geological Society, London.
  • 55. Rijkers, R., Duin, E., Dusar, M., Langenaeker, V., 1993. Crustal structure of the London-Brabant Massif, southern North Sea. Geological Magazine, 130: 569-574.
  • 56. Rodrigues, R., Trindade, L.A.F., Cardoso, J.N., de Aquino Neto, F.R., 1988. Biomarker stratigraphy of the Lower Cretaceous of Espirito Santo Basin, Brazil. Organic Geochemistry, 13: 707-714.
  • 57. Rollin, K.E., 1995. A simple heat-flow quality function and appraisal of heat-flow measurements and heat-flow estimates from the UK Geothermal Catalogue. Tectonophysics, 244: 185-196.
  • 58. Ruffell, A., Worden, R., 2000. Palaeoclimate analysis using spectral gamma-ray data from the Aptian (Cretaceous) of southern England and southern France. Palaeogeography Palaeoclimatology, Palaeoecology, 155: 265-283.
  • 59. Scherer, C.M.S., Lavina, E.L.C., 2006. Stratigraphic evolution of a fluvial-eolian succession: The example of the Upper Jurasic-Lower Cretaceous Guará and Botucatu formations, Parana Basin, Southernmost Brazil. Gondwana Research, 9:475-484.
  • 60. Schnyder, J., Ruffell, A., Deconinck, J.-F., Baudin, F., 2006. Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining late Jurassic-early Cretaceous palaeoclimate change (Dorset, U.K.). Palaeogeography, Palaeoclimatology, Palaeoecology, 229: 303-320.
  • 61. Sha, J., Matsukawa, M., Cai, H., Jiang, B., Ito, M., He, C., Gu, Z., 2003. The Upper Jurassic-Lower Cretaceous of eastern Heilongjiang, northeast China: stratigraphy and regional basin history. Cretaceous Research, 24: 715-728.
  • 62. Sladen, C.P., 1980. The Clay Mineralogy of Pre-Aptian Cretaceous Sediments in NW Europe. Ph.D. thesis, University of Reading, United Kingdom.
  • 63. Sladen, C.P., 1983. Trends in Early Cretaceous clay mineralogy in NW Europe. Zitteliana, 10: 349-357.
  • 64. Sladen, C.P., 1987. Aspects of the clay mineralogy of the Wealden and upper Purbeck rocks. In: Geology of the Country around Hastings and Dungeness (eds. R.D. Lake and E.R. Shephard-Thorn): 71-72. HM Stationery Office, London.
  • 65. Sladen, C.P., Batten, D.J., 1984. Source-area environments of late Jurassic and early Cretaceous sediments in Southeast England. Proceedings of the Geologists' Association, 95: 149-163.
  • 66. Stewart, D.J., 1981a. A field guide to the Wealden Group of the Hastings area and the Isle of Wight. In: Field Guides to Modern and Ancient Fluvial Systems in Britain and Spain (ed. T. Elliott): 3.1-3.32. International Fluvial Conference, University of Keele.
  • 67. Stewart, D.J., 1981b. A meander-belt sandstone of the Lower Cretaceous of Southern England. Sedimentology, 28: 1-20.
  • 68. Stewart, D.J., 1983. Possible suspended-load channel deposits from the Wealden Group (Lower Cretaceous) of Southern England. IAS Special Publications, 6: 369-384.
  • 69. Šimíček, D., Bábek, O., 2015. Spectral gamma-ray logging of the Gres d'Annot, SE France: an outcrop analogue to geophysical facies mapping and well-log correlation of sand-rich turbidite reservoirs. Marine and Petroleum Geology, 60: 1-17.
  • 70. Šimíček, D., Bábek, O., Leichmann, J., 2012. Outcrop gamma-ray logging of siliciclastic turbidites: Separating the detrital provenance signal from facies in the foreland-basin turbidites of the Moravo-Silesian basin, Czech Republic. Sedimentary Geology, 261-262: 50-64.
  • 71. Taylor, J.H., 1963. Sedimentary features of an ancient deltaic complex: the Wealden rocks of southeastern Engi and. Sedimentology, 2: 2-28.
  • 72. Taylor, K.G., Ruffell, A.H., 1993. Early Cretaceous environments. Journal of the Geological Society, 150: 413-414.
  • 73. Topley, W., 1875. Geology of the Weald. HM Stationery Office, London.
  • 74. Vandycke, S., 2002. Palaeostress records in Cretaceous formations in NW Europe: extensional and strike-slip events in relationships with Cretaceous-Tertiary inversion tectonics. Tectonophysics, 357: 119-136.
  • 75. Webster, T., 1826. III. - Observations on the Strata at Hastings, in Sussex. Transactions of the Geological Society of London, 2: 31-36.
  • 76. Wedepohl, K., 1971. Environmental influences on the chemical composition of shales and clays. Physics and Chemistry of the Earth, 8: 305-333.
  • 77. Wedepohl, K., 1991. The composition of the upper Earth's crust and the natural cycles of selected metals. Metals in natural raw materials. In: Metals and Their Compounds in the Environment. Occurrence, Analysis, and Biological Relevance (ed. E. Merian): 3-17. VCH Weinheim, New York.
  • 78. Westaway, R., Maddy, D., Bridgland, D., 2002. Flow in the lower continental crust as a mechanism for the Quaternary uplift of south-east England: constraints from the Thames teriace ret cord. Quaternary Science Reviews, 21: 559-603.
  • 79. Williams, K.L., 1987. An Introduction to X-ray Spectrometry: X-ray Fluorescence and Electron Microprobe Analysis. Allen & Unwin, London.
  • 80. Wójcik-Tabol, P., 2015. Depositional redox conditions of the Grybów Succession (Oligocene, Polish Carpathians) in the light of petrological and geochemical indices. Geological Quarterly, 59(4): 603-614.
  • 81. Wójcik-Tabol, P., Ślączka, A., 2009. Provenance and diagenesis of siliciclastic and organic material in the Albian-Turonian sediments (Silesian Nappe, Lanckorona, Outer Carpathians, Poland): preliminary studies. Annales Societatis Geologorum Poloniae, 79: 53-66.
  • 82. Xu, G., Hannah, J.L., Bingen, B., Georgiev, S., Stein, H.J., 2012a. Digestion methods for trace element measurements in shales: paleoredox proxies examined. Chemical Geology, 324-325: 132-147.
  • 83. Xu, L., Lehmann, B., Mao, J., Nägler, T.F., Neubert, N., Bottcher, M.E., Escher, P., 2012b. Mo isotope and trace element patterns of Lower Cambrian black shales in South China: multi-proxy constraints on the paleoenvironment. Chemical Geology, 318: 45-59.
  • 84. Ziegler, P.A., 1981. Evolution of sedimentary basins in North-West Europe. In: Petroleum Geology of the Continental Shelf of North-West Europe (eds. L.V. Illing and G.D. Hobson): 3-39. Heyden, London.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a1eaa32-8774-4325-b32b-4862135313c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.