PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature-dependent Shock Initiation of CL-20-based High Explosives

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To investigate the effects of temperature on the shock initiation characteristics of hexanitrohexaazaisowurtzitane (CL-20), shock initiation experiments on heated C-1 explosive (94% epsilon phase CL-20, and 6% binder, by weight) were performed at temperatures of 20 °C, 48 °C, 75 °C, 95 °C, 125 °C, 142 °C, and 175 °C. An explosive driven flyer device was used to initiate the C-1 charges and manganin pressure gauges were embedded in the C-1 specimen to record the pressure changes with time. Our results show that C-1 becomes more sensitive as the temperature is increased from 20 °C to 95 °C. The ε to γ phase transition in CL-20 occurs at 125 °C; C-1 with CL-20 in the γ phase at 142 °C is less shock sensitive than C-1 with CL-20 in the ε phase at 95 °C or 75 °C. Compared with C-1 at 142 °C, C-1 at 175 °C shows a dramatic increase in shock sensitivity. An ignition and growth reactive flow model was used to simulate the shock initiation of C-1 at various temperatures, and the parameters were obtained by fitting the experimental data. With this parameter set, the shock initiation characteristics of C-1 for temperatures between 20 °C and 175 °C can be derived.
Rocznik
Strony
361--374
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Bibliografia
  • [1] Simpson, R. L.; Urtiew, P. A.; Ornellas, D. L.; Moody, G. L.; Scribner, K. J.; Hoffman, D. M. CL‐20 Performance Exceeds that of HMX and its Sensitivity is Moderate. Propellants Explos. Pyrotech. 1997, 22(5): 249-255.
  • [2] Tarver, C. M.; Simpson, R. L.; Urtiew, P. A. Shock Initiation of an ε-CL-20-Estane Formulation. Proc. Conf. American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Publishing, 1996, 370(1): 891-894.
  • [3] Tarver, C. M.; Forbes, J. W.; Urtiew, P. A.; Garcia F. Shock Sensitivity of LX-04 at 150 °C. In: Shock Compression of Condensed Matter-1999, AIP Publishing, 2000, 505(1): 891-894.
  • [4] Urtiew, P. A.; Tarver, C. M.; Maienschein, J. L.; Tao, W. C. Effect of Confinement and Thermal Cycling on the Shock Initiation of LX-17. Combust. Flame 1996, 105(1): 43-53.
  • [5] Urtiew, P. A.; Forbes, J. W.; Tarver, C. M.; Vandersall, K. S.; Garcia, F.; Greenwood, D. W.; Maienschein, J. L. Shock Sensitivity of LX-04 Containing Delta Phase HMX at Elevated Temperatures. AIP Conference Proc., IOP Institute of Physics Publishing Ltd., 2004, 706(2): 1053-1056.
  • [6] Russell, T. P.; Miller, P. J.; Piermarini, G. J.; Block, S. High-pressure Phase Transition in Gamma-Hexanitrohexaazaisowurtzitane. J. Phys. Chem. 1992, 96(13): 5509-5512.
  • [7] Russell, T. P.; Miller, P. J.; Piermarini, G. J.; Block, S. Pressure/Temperature Phase Diagram of Hexanitrohexaazaisowurtzitane. J. Phys. Chem. 1993, 97(9): 1993-1997.
  • [8] Gump, J. C.; Peiris, S. M. Phase Transitions and Isothermal Equations of State of Epsilon Hexanitrohexaazaisowurtzitane (CL-20). J. Appl. Phys. 2008, 104(8): 083509.
  • [9] Ma, X. Research on the Thermal Reaction Characteristics and Rules of High Mixed Explosives. Beijing Institute of Technology Press, Beijing 2014, pp. 36-37.
  • [10] Gustavsen, R. L.;, Gehr R. J.; Bucholtz S. M.; Alcon R. R.; Bartram B. D. Shock Initiation of the Tri-amino-tri-nitro-benzene Based Explosive PBX 9502 Cooled to 55 °C. J. Appl. Phys. 2012, 112(7): 74909.
  • [11] Tian, Q.; Yan, G.; Sun, G.; Huang, C.; Xie, L.; Chen, B.; Huang, M.; Li, H.; Liu, Y.; Wang, J. Thermally Induced Damage in Hexanitrohexaazaisowurtzitane. Cent. Eur. J. Energ. Mater. 2013, 10: 359.
  • [12] Hallquist, J. O.; Benson, D. J. LS-DYNA User’s Manual–Nonlinear Dynamic Analysis of Structures in Three Dimensions. Livermore Software Technology Corporation, California USA 1993, pp.17.
  • [13] Lee, E.; Finger, M.; Collins, W. JWL Equation of State Coefficients for High Explosives. No. UCID-16189, 1973.
  • [14] Tarver, C. M.; Hallquist, J. O.; Erickson, L. M. Modeling Short Pulse Duration Shock Initiation of Solid Explosives. No. UCRL-91484, Lawrence Livermore National Lab., CA (USA) 1985.
  • [15] Urtiew, P. A.; Vandersall, K. S.; Tarver, C. M.; Garcia, F. Initiation of Heated PBX-9501 Explosive when Exposed to Dynamic Loading. No. UCRLCONF-214667, Lawrence Livermore National Lab., 2005.
  • [16] Ramsay, J. B.; Popolato, A. Analysis of Shock Wave and Initiation Data for Solid Explosives. No. LA-DC-6992, Los Alamos Scientific Lab., Univ. of California, N. Mex. 1965.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a1c0900-b9ba-4366-a234-040df44e6d8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.