PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Set of Finite Elements for 2D Analysis of Reinforced Concrete Foundations on Deformable Subsoil

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a formulation and verification of a 2D soil – structure interaction model which enables the analysis of reinforced concrete shallow foundations under monotonic short-time loads. The structure supported by a deformable subsoil, whose elasto-plastic features are being considered. The structure model describes: the ability of crack creation, non-linear stress – strain characteristics of concrete and reinforcement and also reinforcement – concrete interaction. The foundation – subsoil contact model enables the identification of slide and adhesion zones. The presented mathematical formulation allowed for the development of a set of finite elements simulating the behaviour of the foundation, the subsoil and the contact zone between them. The elasto-plastic approach was used to describe the behaviour of the structure, the subsoil and the contact phenomena. Computer programs were prepared and verifying analyses were presented.
Rocznik
Strony
100--116
Opis fizyczny
Bibliogr. 35 poz., rys., wzory., wykr.
Twórcy
  • University of Zielona Góra, Institute of Civil Engineering, Zielona Góra, Poland
Bibliografia
  • 1. Look, BG 2007. Handbook of geotechnical investigation and design tables. London: Taylor & Francis.
  • 2. Hofstetter, G and Mang, HA 1995. Computation mechanics of reinforced concrete structures. Wiesbaden: F. Vieweg & Sohn Verlagsgesellschaft mbH.
  • 3. Tejchman, J and Bobiński, J 2013. Continuous and discontinuous modelling of fracture in concrete using FEM. Heidelberg: Springer.
  • 4. Chen, WF and Mizuno, E 1990. Nonlinear analysis in soil mechanics: Theory and implementation. Amsterdam: Elsevier.
  • 5. Yu, HS 2006. Plasticity and geotechnics. Berlin: Springer.
  • 6. Puzrin, AM 2012. Constitutive modelling in geomechanics. Introduction. Berlin: Springer.
  • 7. Meschke, G, Pichler, B and Rots, JG 2022. Computational modelling of concrete and concrete structures. Boca Raton: CRC Press/Balkema.
  • 8. Michałowski, R and Mróz, Z 1978. Associated and non-associated sliding rules in contact friction problems. Archves of Mechanics 30, 3, 259-276.
  • 9. Potts, DM and Zdravković, L 2001. Finite element analysis in geotechnical engineering: Applications, London: Thomas Telford.
  • 10. Sheng, D, Wriggers, P and Sloan, SW 2007. Application of frictional contact in geotechnical engineering. Int. J. of Geomechanics 7, 3, 176-185.
  • 11. Dhadse, GD, Ramtekkar, G and Bhatt, G 2022. Influence due to interface in finite element modeling of soil-structure interaction system: a study considering modified interface element. Research on Engineering Structures & Materials 8 1, 127-154.
  • 12. Goodman, RE, Taylor, RL and Brekke, TL 1968. A model for the mechanics of jointed rock. Journal of the Soil Mechanics and Foundations Division 94, 3, 637-659.
  • 13. Desai, CS, Zaman, MM, Lighter, JG and Siriwardane, HJ 1984. Thin-layer element for interfaces and joints. Int. J. Num. Anal. Meth. Geomech. 8, 1, 19-43.
  • 14. Qian, XX, Yuan, HN, Li, QM and Zhang BY 2013. Comparative study on interface elements, thin-layer elements, and contact analysis methods in the analysis of high concrete-faced rockfill dams. Journal of Applied Mathematics 2013, 1-11.
  • 15. Damians, IP, Yu, Y, Lloret, A and Bathurst, RJ 2015. Equivalent interface properties to model soil-facing interactions with zero-thickness and continuum element methodologies. From Fundamentals to Applications in Geotechnics, 1065-1072.
  • 16. Dalili, SM, Huat, BBK, Jaafar, MS and Alkarni, A 2015. Soil – framed structure interaction analysis – a new interface element. Latin American J. of Solids Struct 12, 2, 226-249.
  • 17. Li, Y-K, Han, X-L, Ji, J, Fu, D-L, Qiu, Y-K, Dai, B-C and Lin, C 2015. Behavior of interfaces between granular soil and structure: A state-of-the-art review. The Open Civil Engineering Journal 9, 213-223.
  • 18. Dhadse, GD, Ramtekkar, G and Bhatt, G 2021. Finite element modeling of soil structure interaction system with interface: a review. Archives of Computational Methods in Engineering 28, 5, 3415- 3432.
  • 19. Belhadj, FZ, Belhadj, AF and Chabaat, M. 2022. Soil structure interaction interfaces: literature review. Arabian Journal of Geosciences 15, 1130.
  • 20. Chen, X, Zhang, J, Xiao, Y and Li, J 2015. Effect of roughness on shear behavior of red clay – concrete interface in large-scale direct shear tests. Can. Geotech. J. 52, 1122-1135.
  • 21. Zhang, G, Liang, D and Zhang, JM 2006. Image analysis measurement of soil particle movement during a soil–structure interface test. Computers and Geotechnics, 33, 4-5, 248-59.
  • 22. Zhang, G and Zhang, J 2009. State of the art: Mechanical behavior of soil – structure interface. Progress in Natural Science 19, 1187-1196.
  • 23. Hu, L and Pu, J 2004. Testing and modeling of soil-structure interface. J. Geotech. Geoenviron. Eng. 130, 8, 851-860.
  • 24. DeJong, JT and Westgate, ZJ 2009. Role of initial state, material properties, and confinement condition on local and global soil – structure interface behavior. J. Geotech. Geoenviron. Eng. 135, 11, 1646-1660.
  • 25. Dang, HK and Meguid, MA 2013. An efficient finite–discrete element method for quasi-static nonlinear soil–structure interaction problems. Int. J. Numer. Anal. Meth. Geomech. 37, 130-149.
  • 26. Carbonell, JM, Monforte, L, Ciantia, LM, Arroyo, M and Gens, A 2022. Geotechnical particle finite element method for modeling of soil – structure interaction under large deformation conditions. Journal of Rock Mechanics and Geotechnical Engineering 14, 967-983.
  • 27. Koiter, WT 1960. General theorem for elastic-plastic solids. In: Snedon, IN and Hill, R (eds) Progress in solid mechanics. Amsterdam: North Holland, 1, 165-221.
  • 28. Owen, DR and Figueiras, JA 1984. Ultimate load analysis of reinforced concrete plates and shells including geometric nonlinear effects. In: Hinton, E and Owen, DR (eds) Finite element software for plates and shells. Swansea: Prineridge Press, 327-382.
  • 29. Karihaloo, BL 1995. Fracture mechanics and structural concrete. Harlow: Longman Scientific & Technical.
  • 30. Zienkiewicz, OC and Taylor, RL 1991. The finite element method. Vol. 2 Solid and fluid mechanics, dynamics and non-linearity. London: McGrow-Hill, 4th ed.
  • 31. Hohberg, J-M 1990. A note on spurious oscilations in FEM joint elements, Eartquake Engng. Stuct. Dyn. 19, 773-779.
  • 32. Monnier, T 1970. The behavior of continuous beams in reinforced concrete, Heron 17, 1, 1-83.
  • 33. Zong-Ze, Y, Hong, Z and Gua-Hua, X 1995. A study of deformation in the interface between soil and concrete. Comp. & Geotech. 17, 75-92.
  • 34. Bergan, PG 1984. Some aspects of interpolation and integration in nonlinear finite element analysis of reinforced concrete structures, In: Damjanić, F et al. (eds) Computer-Aided Analysis and Design of Concrete Structures. Swansea: Pineridge Press, 301-316.
  • 35. Sloan, SW and Randolph, MF 1982. Numerical prediction of collapse loads using finite element method, Int. J. Num. Anal. Meth. Geomech. 6, 47-76.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a1bb8de-5720-42d1-89cc-6dadeb7f06c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.