PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Internal stresses in PVD coated tool composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of work is the investigation of the internal stresses in PVD coated metal matrix composites (MMC). Sintered MMC substrate is composed of the matrix with the chemical composition corresponding to the high-speed steel, reinforced with the TiC type hard carbide phase. Functionally graded composition of MMC providing of high ductility characteristic of steel in the core zone as well as high hardness characteristic of cemented carbides in the surface zone. Internal stresses were determined with use of finite element method in ANSYS environment. The reason of undertaking the work is necessity of develop the research of internal stresses, occurring in the coating, as well as in the adhesion zone of coating and substrate, which makes it possible to draw valuable conclusions concerning engineering process of the advisable structure and chemical composition of coatings. The investigations were carried out on cutting tools models containing defined zones differing in chemical composition. Modelled materials were characteristic of chemical composition corresponding to the high-speed steel at the core, reinforced with the TiC type hard carbide phase with the growing fraction of these phases in the outward direction from the core to the surface, additionally coated with (Ti,Al)N or Ti(C.N) functionally graded PVD coatings. Results of determined internal stresses were compared with the results calculated using experimental X-ray sin2ψ method. It was demonstrated, that the presented model meets the initial criteria, which gives ground to the assumption about its utility for determining the stresses in coatings as well as in functionally graded sintered materials. The results of computer simulations correlate with the experimental results.
Twórcy
autor
  • Silesian Uniyersity of Technology, Institute of Engineering Materials and Biomaterials, 18A Konarskiego str., 44-100 Gliwice, Poland
autor
  • Silesian Uniyersity of Technology, Institute of Engineering Materials and Biomaterials, 18A Konarskiego str., 44-100 Gliwice, Poland
autor
  • Silesian Uniyersity of Technology, Institute of Engineering Materials and Biomaterials, 18A Konarskiego str., 44-100 Gliwice, Poland
autor
  • Silesian Uniyersity of Technology, Institute of Engineering Materials and Biomaterials, 18A Konarskiego str., 44-100 Gliwice, Poland
autor
  • Silesian Uniyersity of Technology, Institute of Engineering Materials and Biomaterials, 18A Konarskiego str., 44-100 Gliwice, Poland
Bibliografia
  • [1] E. Vogli, W. Tilhnann, U. Selvadurai-Lassl. G. Fischer, J. Herper, Appl. Surf. Sci. 257, (20), 8550-8557 (2011).
  • [2] Q. Wang, F. Zhou, X. Wang, K. Chen, M. Wang, T. Qian, Y. Li, Appl. Surf. Sci. 257, (17), 7813-7820 (2011).
  • [3] M. Marvi-Mashhadi, M. Mazinani, A. Rezaee-Bazzaz. Comp. Mater. Sci. 65, 197-202 (2012).
  • [4] F. R. Liu, Q. Zhang, W. P. Zhou, J. J. Zhao, J. M Chen, J. Mater. Process. Tech. 212, (10), 2058-2065 (2012).
  • [5] A. Śliwa, M. Bonek, J. Mikuła, Appl. Surf. Sci. 18, 1-6, (2016).
  • [6] L. A. Dobrzański, M. Staszuk, K. Gołombek, A. Śliwa, M. Pancielejko, Arch. Metali. Mater. 55, (1), 187-193 (2010).
  • [7] L. A. Dobrzański, A. Śliwa, W. Kwaśny, J. Mater. Process. Tech. 164-165, 1192-1196 (2005).
  • [8] L. W. Żukowska, A. Śliwa, J. Mikuła, M. Bonek, W. Kwaśny, M. Sroka, D. Pakuła, Arch. Metali. Mater. 61, (1), 149-152 (2016).
  • [9] A. Zieliński, G. Golański, M. Sroka, Kovove Mater. 54, (1), 61-70 (2016).
  • [10] T. Tański. K. Labisz, K. Lukaszkowicz, A. Śliwa, K. Gołombek, Surf. Eng. 30, (12), 927-932 (2014).
  • [11] A. Śliwa, J. Mikuła, K. Golombek, T. Tanski, W. Kwaśny, M. Bonek, Z. Brytan, Appl. Surf. Sci. 23, 1-7, (2016).
  • [12] J. Montalvo-Urquizo, P. Bobrov, A. Schmidt, W. Wosniok, Mech. Mater. 47, 1-10 (2012).
  • [13] A. Zieliński. G. Golański, M. Sroka, T. Tański. Mater. High Temp. 33, (1), 24-32 (2016).
  • [14] Ł. Szparaga, J. Ratajski, Eng. Mat. 32, 760-763 (2011).
  • [15] L. A. Dobrzański, W. Sitek. M. Krupiński. J. Dobrzański. J. Mater. Process. Tech. 157, 102-106 (2004).
  • [16] L. A. Dobrzański, D. Pakuła. Mater. Sci. Forum. 513, 119-133 (2006).
  • [17] A. Zieliński, G. Golański, M. Sroka, P. Skupień, Mater. High Temp. 33, (2), 154-163 (2016).
  • [18] L. A. Dobrzański, W. Sitek, J. Mater. Process. Tech. 157, 245-249 (2004).
  • [19] A. Zieliński, M. Miczka, B. Boryczko, M. Sroka, Arch. Civ. Mech. Eng. 4. 813-824 (2016).
  • [20] A. Zieliński, G. Golański, M. Sroka, J. Dobrzański, Mater. Sci. Tech-Lond. (2016). DOI: 10.1179/1743284715Y0000000137 (in press).
  • [21] Z. Shipin,. E. Oubai, A. Rooh, A. Khurram , G. Wagdi Habashi, Finite Elem. Anal. Des. 57, 55-66 (2012).
Uwagi
EN
This publication was financed by the Ministry of Science and Higher education of Poland as the statutory financial grant of the faculty of Mechanical engineering SUT
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a15daf0-c8a8-4c76-8fee-5d8f20369c09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.