Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
50--52
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
- Europejskie Studia Optyki Okularowej i Optometrii, Wydział Fizyki UW
Bibliografia
- 1. D. Silver et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017)
- 2. www.en.wikipedia.org/wiki/Timeline_of_artificial_intelligence
- 3. V. C. Müller, N. Bostrom. Future progress in artificial intelligence: A Survey of Expert Opinion. In Vincent C. Müller (ed.): Fundamental Issues of Artificial Intelligence (Synthese Library; Berlin: Springer 2016)
- 4. H. Wang et al. Solving Verbal Comprehension Questions in IQ Test by Knowledge-Powered Word Embedding. arXiv:1505.07909 (2016)
- 5. F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65(6), 386–408 (1958)
- 6. www.cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
- 7. J. De Fauw et al. Automated analysis of retinal imaging using machine learning techniques for computer vision [version 2; referees: 2 approved]. F1000Research 5, 1573 (2017)
- 8. L. Peng, V. Gulshan. Deep Learning for Detection of Diabetic Eye Disease. www. research.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic. html
- 9. V. Gulshan et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 316(22), 2402–2410 (2016)
- 10. J. Powles, H. Hodson. Google DeepMind and healthcare in an age of algorithms. Health and Technology 7(4), 351–367 (2017)
- 11. T. y in Wong, N. M. Bressler. Artificial Intelligence With Deep Learning Tech-nology Looks Into Diabetic Retinopathy Screening. JAMA 316(22), 2366–2367 (2016)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a05a4ac-f80d-4631-8f06-b685070bbdca