PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrated multi-trophic aquaculture of the European flat oyster (Ostrea edulis Linnaeus, 1758) : A case study from Boka Kotorska Bay (Montenegro)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although integrated multi-trophic aquaculture (IMTA) is recognized as a strategy to control and minimize the impact of fish farming on the marine environment, there are still many unknowns when it comes to this type of farming. This paper presents the results of research on the growth of European flat oysters in IMTA and monoculture systems. Growth was monitored at three different sites: near fish cages, 100 m from fish cages, and in a monoculture system, during an 18-month experiment. The highest mortality occurred at the site near the fish cages. At the end of the experiment, all monitored individuals reach commercial size, except for four individuals at the site near the fish cages. There were statistically significant differences in oyster growth with respect to site and period. At the site near the fish cages, oyster growth was significantly lower compared to the growth at the two other sites. The most intense growth of oysters occurred during the spring and early summer period. Our results indicate that the production cycle of oysters in integrated aquaculture and monoculture is quite similar and that sites directly adjacent to fish cages should be avoided for oyster farming.
Słowa kluczowe
Rocznik
Strony
31--39
Opis fizyczny
Bibliogr. 47 poz., map, tab., wykr.
Twórcy
  • Institute of Marine Biology, University of Montenegro, Kotor, Montenegro
  • Institute of Marine Biology, University of Montenegro, Kotor, Montenegro
  • Faculty of Science and Mathematics, Department of Biology, University of Montenegro, Podgorica, Montenegro
  • Institute of Marine Biology, University of Montenegro, Kotor, Montenegro
autor
  • Institute of Marine Biology, University of Montenegro, Kotor, Montenegro
Bibliografia
  • [1]. Aguado-Giménez, F., Hernández, M. D., Cerezo-Valverde, J., Piedecausa, M. A., & García-García, B. (2014). Does flat oyster (Ostrea edulis) rearing improve under open-sea integrated multi-trophic conditions? Aquaculture International, 22(2), 447-467. https://doi.org/10.1007/s10499-013-9653-6
  • [2]. Askew, C. G. (1972). The growth of oysters Ostrea edulis and Crassostrea gigas in Emsworth Harbour. Aquaculture (Amsterdam, Netherlands), 1, 237-259. https://doi.org/10.1016/0044-8486(72)90026-9
  • [3]. Bajnoci, A. (2014). Effects of organic input from fish farming on the condition of mussels (Mytilus galloprovincialis) in Bistrina. Final thesis, University of Dubrovnik, Croatia. (In Croatian).
  • [4]. Barrington, K., Chopin, T., & Robinson, S. (2009). Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. In D. Soto (Eds.), Integrated mariculture: A global review (pp. 7-46). FAO fisheries and aquaculture technical paper, FAO.
  • [5]. Bellafiore, D., Guarnieri, A., Grilli, F., Penna, P., Bortoluzzi, G., Giglio, F., & Pinardi, N. (2011). Study of the hydrodynamical processes in the Boka Kotorska Bay with a finite element model. Dynamics of Atmospheres and Oceans, 52(1-2), 298-321. https://doi.org/10.1016/j.dynatmoce.2011.03.005
  • [6]. Carlucci, R., Sassanelli, G., Matarrese, A., Giove, A., & D’Onghia, G. (2010). Experimental data on growth, mortality and reproduction of Ostrea edulis (L., 1758) in a semi-enclosed basin of the Mediterranean Sea. Aquaculture (Amsterdam, Netherlands), 306(1-4), 167-176. https://doi.org/10.1016/j.aquaculture.2010.05.026
  • [7]. Cheshuk, B. W., Purser, P. J., & Quintana, G. (2003). Integrated open-water mussel (Mytilus plantatus) and Antlantic salmon (Salmo salar) culture in Tasmania, Australia. Aquaculture (Amsterdam, Netherlands), 218(1-4), 357-378. https://doi.org/10.1016/S0044-8486(02)00640-3
  • [8]. Cunha, M. E., Quental-Ferreira, H., Parejo, A., Gamito, S., Ribeiro, L., Moreira, M., Montiro, I., Soares, F., & Pousão-Ferreira, P. (2019). Understanding the individual role of fish, oyster, phytoplankton and macroalgae in the ecology of integrated production in earthen ponds. Aquaculture (Amsterdam, Netherlands), 512, 734297. https://doi.org/10.1016/j.aquaculture.2019.734297
  • [9]. Drakulović, D., Vuksanović, N. & Joksimović, D. (2011). Dynamics of phytoplankton in Boka Kotorska Bay. Studia Marina, 25(1), 1-20.
  • [10]. Drakulović, D., Pestorić, B., Cvijan, M., Krivokapić, S., & Vuksanović, N. (2012). Distribution of phytoplankton community in Kotor Bay (south-eastern Adriatic Sea). Open Life Sciences, 7(3), 470-486. https://doi.org/10.2478/s11535-012-0023-6
  • [11]. Drakulović, D., Gvozdenović, S., Joksimović, D., Mandić, M., & Pestorić, B. (2017). Toxic and potentially toxic phytoplankton in the mussel and fish farms in the transitional area of Montenegrin coast (south-eastern Adriatic Sea). Turkish Journal of Fisheries and Aquatic Sciences, 17(5), 885-900. https://doi.org/10.4194/1303-2712-v17_5_05
  • [12]. Gayanilo, P. C., Sparre, P., & Pauly, D. (2005). FAO-ICLARM stock assessment tools II. User’s guide. FAO.
  • [13]. Giangrande, A., Pierri, C., Arduini, D., Borghese, J., Licciano, M., Trani, R., Corriero, G., Basile, G., Cecere, E., Petrocelli, A., Stabili, L., & Longo, C. (2020). An innovative IMTA system: Polychaetes, sponges and macroalgae co-cultured in a southern Italian in-shore mariculture plant (Ionian Sea). Journal of Marine Science and Engineering, 8, 733. https://doi.org/10.3390/jmse8100733
  • [14]. Gosling, E. M. (2003). Bivalve Molluscs. Biology, ecology and culture. Blackwell Publishing. https://doi.org/10.1002/9780470995532
  • [15]. Grebe, G. S., Byron, C. J., Brady, D. C., Geisser, A. H., & Brennan, K. D. (2021). The nitrogen bioextraction potential of near shore Saccharina latissima cultivation and harvest in the Western Gulf of Maine. Journal of Applied Phycology, 33, 1741-1757. https://doi.org/10.1007/s10811-021-02367-6
  • [16]. Grosso, L., Rakaj, A., Fianchini, A., Morroni, L., Cataudella, S., & Scardi, M. (2021). Integrated multi-trophic aquaculture (IMTA) system combining the sea urchin Paracentrotus lividus, as primary species, and the sea cucumber Holothuria tubulosa as extractive species. Aquaculture (Amsterdam, Netherlands), 534, 736268. https://doi.org/10.1016/j.aquaculture.2020.736268
  • [17]. Gvozdenović, S., Mandić, M., Pešić, V., Nikolić, M., Pešić, A., & Ikica, Z. (2017). Comparison between IMTA and monoculture farming of mussels (Mytilus galloprovincialis L.) in the Boka Kotorska Bay. Acta Adriatica, 58(2), 271-284. https://doi.org/10.32582/aa.58.2.7
  • [18]. Handå, A., Min, H., Wang, X., Broch, O. J., Reitan, K. I., Reinertsen, H., & Olsen, Y. (2012). Incorporation of fish feed and growth of blue mussels (Mytilus edulis) in close proximity to salmon (Salmo salar) aquaculture: Implications for integrated multi-trophic aquaculture in Norwegian coastal waters. Aquaculture (Amsterdam, Netherlands), 356-357, 328-341. https://doi.org/10.1016/j.aquaculture.2012.04.048
  • [19]. Irisarri, J., Cubillo, A. M., Fernández-Reiriz, M. J., & Labarta, U. (2015). Growth variations within a farm of mussels (Mytilus galloprovincialis) held near fish cages: Importance for the implementation of integrated aquaculture. Aquaculture Research, 46, 1988-2002. https://doi.org/10.1111/are.12356
  • [20]. Kleitou, P., Kletou, D., & David, J. (2018). Is Europe ready for integrated multi-trophic aquaculture? A survey on the perspectives of European farmers and scientists with IMTA experience. Aquaculture (Amsterdam, Netherlands), 490, 136-148. https://doi.org/10.1016/j.aquaculture.2018.02.035
  • [21]. Lander, T., Barrington, K., Robinson, S., MacDonald, B., & Martin, J. (2004). Dynamic of the blue mussel as an extractive organism in an integrated aquaculture system. Bulletin of the Aquaculture Association of Canada, 104(3), 19-28.
  • [22]. Lander, T. R., Robinson, S. M. C., MacDonald, B. A., & Martin, J. D. (2012). Enhanced growth rates and condition index of blue mussels (Mytilus edulis) held at the integrated multitrophic aquaculture sites in the Bay of Fundy. Journal of Shellfish Research, 31(4), 997-1007. https://doi.org/10.2983/035.031.0412
  • [23]. MacDonald, B. A., Robinson, S. M. C., & Barrington, K. A. (2011). Feeding activity of mussels (Mytilus edulis) held in the field at an integrated multi-trophic aquaculture (IMTA) site (Salmo salar) and exposed to fish food in the laboratory. Aquaculture (Amsterdam, Netherlands), 314(1-4), 244-251. https://doi.org/10.1016/j.aquaculture.2011.01.045
  • [24]. Mandić, M. & Huter, A. (2014). Technical and technological characteristics of shellfish farms. Project on the technical-technological conditions of commercial farming of oysters (Ostrea edulis) and mussels (Mytilus galloprovincialis) in the ecological conditions of Risan Bay, Area - sector 8 (Turski rt - Kostanjica - Donji Morinj). Montenegro: Institute of Marine Biology, University of Montenegro. (In Montenegrin).
  • [25]. Mandić, M., Ikica, Z., & Gvozdenović, S. (2016). Mariculture in the Boka Kotorska Bay: Tradition, current state and perspective. In A. Joksimović, M. Đurović, A. V. Semenov, I. S. Zonn, & A. G. Kostianoy (Eds.), The Boka Kotorska Bay Environment (pp. 395-409). Springer. https://doi.org/10.1007/698_2016_33
  • [26]. Mazzola, A., & Sarà, G. (2001). The effect of fish farming organic waste on food availability for bivalve molluscs (Gaeta Gulf, Central Tyrrhenian, MED): Stable carbon isotopic analysis. Aquaculture (Amsterdam, Netherlands), 192(2-4), 361-379. https://doi.org/10.1016/S0044-8486(00)00463-4
  • [27]. MONSTAT. (2023). Production of fish and bivalves - aquaculture and mariculture. Retrieved March 01, 2023, from https://www.monstat.org/cg/page.php?id=2032&pageid=162. (In Montenegrin).
  • [28]. Navarrete-Mier, F., Sanz-Lázaro, C., & Marin, A. (2010). Does bivalve molluscs polyculture reduce marine fin fish farming environmental impact? Aquaculture (Amsterdam, Netherlands), 306(1-4), 101-107. https://doi.org/10.1016/j.aquaculture.2010.06.013
  • [29]. Nederlof, M. A. J., Fang, J., Dahlgren, T. G., Rastrick, S. P. S., Smaal, A. C., Strand, Ø., Sveier, H., Verdegem, M. C. J., & Jansen, H. M. (2020). Application of polychaetes in (de)coupled integrated aquaculture: An approach for fish waste bioremediation. Aquaculture Environment Interactions, 12, 385-399. https://doi.org/10.3354/aei00371
  • [30]. Official Gazette of Montenegro 65/2015 (2015). Order about prohibiting the hunting and marketing of fish fry, immature fish and other marine organisms. No. 0/65/2015/1310. Montenegro: Public Institution Official Gazette of Montenegro. (In Montenegrin).
  • [31]. Peharda, M., Župan, I., Bavčević, L., Frankić, A., & Klanjšček, T. (2007). Growth and condition index of mussel Mytilus galloprovincialis in experimental integrated aquaculture. Aquaculture Research, 38(1), 1714-1720. https://doi.org/10.1111/j.1365-2109.2007.01840.x
  • [32]. Radetić, A. (2010). Impact of ecological parameters on seasonal fluctuation in condition index of farmed European flat oyster Ostrea edulis (Linnaeus, 1758) in Malostonski Bay. Final thesis, University of Dubrovnik, Croatia. (In Croatian).
  • [33]. Redmond, K. J., Magnesen, T., Hansen, P. K., Strand, Ø., & Meier, S. (2010). Stable isotopes and fatty acids as tracers of the assimilation of salmon fish feed in blue mussels (Mytilus edulis). Aquaculture (Amsterdam, Netherlands), 298(3-4), 202-210. https://doi.org/10.1016/j.aquaculture.2009.10.002
  • [34]. Reid, G. K., Liutkus, M., Bennett, A., Robinson, S. M. C., MacDonald, B., & Page, F. (2010). Absorption efficiency of blue mussels (Mytilus edulis and M. trossulus) feeding on Atlantic salmon (Salmo salar) feed and fecal particulates: Implications for integrated multi-trophic aquaculture. Aquaculture (Amsterdam, Netherlands), 299(1-4), 165-169. https://doi.org/10.1016/j.aquaculture.2009.12.002
  • [35]. Robert, R., Borel, M., Pichot, Y., & Trut, G. (1991). Growth and mortality of the European oyster Ostrea edulis in the Bay of Arcachon (France). Aquatic Living Resources, 4(4), 265-274. https://doi.org/10.1051/alr:1991028
  • [36]. Sanz-Lazaro, C., & Sanchez-Jerez, P. (2017). Mussels do not directly assimilate fish farm wastes: Shifting the rationale of integrated multi-trophic aquaculture to a broader scale. Journal of Environmental Management, 201, 82-88. https://doi.org/10.1016/j.jenvman.2017.06.029 PMID:28649010.
  • [37]. Sarà, G., Lo Martire, M., Buffa, G., Mannino, A. M., & Badalamenti, F. (2007). The fouling community as an indicator of fish farming impact in Mediterranean. Aquaculture Research, 38(1), 66-75. https://doi.org/10.1111/j.1365-2109.2006.01632.x
  • [38]. Sarà, G., Zenone, A., & Tomasello, A. (2009). Growth of Mytilus galloprovincialis (Mollusca, Bivalvia) close to fish farms: A case of integrated multi-trophic aquaculture within the Tyrrhenian Sea. Hydrobiologia, 636(1), 129-136. https://doi.org/10.1007/s10750-009-9942-2
  • [39]. Sarà, G., Reid, G. K., Rinaldi, A., Palmeri, V., Troell, M., & Kooijman, S. A. L. M. (2012). Growth and reproductive simulation of candidate shellfish species at fish cages in the Southern Mediterranean: Dynamic Energy Budget (DEB) modelling for integrated multi-trophic aquaculture. Aquaculture (Amsterdam, Netherlands), 324-325, 259-266. https://doi.org/10.1016/j.aquaculture.2011.10.042
  • [40]. Stjepčević, J. (1974). Ecology of Mediterranean mussel (Mytilus galloprovincialis Lamk.) and European flat oyster (Ostrea edulis L.) on farms in Boka Kotorska Bay. Studia Marina, 7, 6-164. (In Montenegrin).
  • [41]. Tičina, V., Katavić, I., & Grubišić, L. (2020). Marine aquaculture impacts on marine biota in oligotrophic environments of the Mediterranean Sea - A Review. Frontiers in Marine Science, 7, 217. https://doi.org/10.3389/fmars.2020.00217
  • [42]. Troell, M., Halling, C., Neori, A., Chopin, T., Buschmann, A. H., Kautsky, N., & Yarish, C. (2003). Integrated mariculture: Asking the right questions. Aquaculture (Amsterdam, Netherlands), 226(1-4), 69-90. https://doi.org/10.1016/S0044-8486(03)00469-1
  • [43]. Zelić, I. (2015). Bivalve farming. Final thesis, University of Split, Croatia. (In Croatian).
  • [44]. Zrnčić, S., Oraić, D., Mihaljević, Ž., & Zanella, D. (2007). Impact of varying cultivation depths on growth rate and survival of the European flat oyster Ostrea edulis L. Aquaculture Research, 38(12), 1305-1310. https://doi.org/10.1111/j.1365-2109.2007.01804.x
  • [45]. Župan, I. (2012). Integrated aquaculture of Mediterranean mussel (Mytilus galloprovincialis Lamarck, 1819) and Noah’s ark shell (Arca noae Linnaeus, 1758) on fish farms. Doctoral dissertation, University of Split and University of Dubrovnik, Croatia. (In Croatian).
  • [46]. Župan, I., Peharda, M., Dolenec, T., Dolenec, M., Rožić, P. Ž., Lojen, S., Ezgeta-Balić, D., & Arapov, J. (2014). Aquaculture assessment of Noah’s ark (Arca noae Linnaeus, 1758) in the central Adriatic Sea (Croatia). Journal of Shellfish Research, 33(2), 433-441. https://doi.org/10.2983/035.033.0212
  • [47]. Župan, I., Šarić, T., Mokos, M., Gangemi, J., & Cipriano, A. (2016).Comparison of mussel production parameters from traditional and IMTA sites in the Adriatic Sea (Croatia). Retrieved November 20, 2022, from https://www. researchgate.net/publication/311678682_COMPARISON_OF_MUSSEL_PRODUCTION_PARAMETERS_FROM_TRADITIONAL_AND_IMTA_SITES_IN_THE_ADRIATIC_SEA_CROATIA
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a045e09-1b9d-4ed5-923b-3d4e87d565a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.