
SSARS 2009
Summer Safety and Reliability Seminars, July 19-25, 2009, Gdańsk-Sopot, Poland

 15

1. Introduction

Recently, a special class of distributed software was
born, and is used intensively by people working on
their terminals, situated in office or at home. The
object talking about is called web application,
which “is a collection of servlets, html pages,
classes, and other resources that can be bundled and
run on multiple containers from multiple vendors”,
according to [4]. However, the term is used generic
for web sites (web servers), and every software
application using Internet environment.
According to Pickering [16], “in most server
architectures, the failure of any one system or
service in the path between server and user will in
effect cause failure of the entire application as far as
the user is concerned”. The term failure is used
according to [18], i.e. “the event of a system
deviating from its specified behaviour”. Another
important aspect deals with security aspects [1].
Even the security is managed separately; before the
security hole is patched any failures of the
application will have great impact on the
application reliability. This makes difficult the
usage of the standard software reliability growth
models for insecure systems. When speaking about
web-servers, we have to take into account many
technologies (hardware and software), each one

having its own failure modes and sources of delay
and unreliability, as proved in [16].
The reliability of the web-based applications can be
considered as special case of distributed software
running on distributed computer systems [18], over
different kind of networks (local area networks,
wide area networks etc.). If the nodes of the
network are assumed to be perfect and the
connections among nodes are assumed to fail in a
statistically independent manner, then the network
reliability can be computed as in [21]. However, if
the nodes are imperfect, then the usage of the
algorithm provided by Lin et al. in [12] is an
efficient solution.
The aim of this paper is to describe the relevant
aspects of web-based software coding, testing and
reliability analysis and to outline some best
practices when thinking in terms of web-based
software reliability engineering.
The above ideas motivate us to organize the paper
as follows. The second section considers the web-
based software design for reliability, and covers the
state of the art in implementing and testing web
applications. The management of the software
vulnerabilities is described in the third section. For
a secure web-server, aspects concerning the
reliability growth modeling are considering in the
fourth section. Finally, a case study is discussed,
and concluding remarks are formulated.

Albeanu Grigore,

Averian Alexandru,

Duda Iordan
Spiru Haret University, Bucharest, Romania

Towards web applications reliability engineering

 Keywords

web application, software reliability, software vulnerability, software security

Abstract

There is an increasing request for web-based software systems, some of them to be used very intensive. The
customers ask not only for fast design and implementation, but also for a high quality product. Considering
reliability as an important quality attribute, this paper describes the current state of the art in designing,
implementing, and testing web-based applications. An important attention is given to web-based software
vulnerabilities and how to deliver secure software. Then, reliability modeling in the case of secure web-based
software is discussed.

Albeanu Grigore, Averian Alexandru, Duda Iordan
Towards web applications reliability engineering

 16

2. Web-based software engineering

As a general rule, the web-based software is built in
order to provide some functionality using different
web services protocols and frameworks oriented to
a specific application [3]. For instance, E-business
XML (or ebXML) is a useful protocol when
processing electronic business information over
various platforms. Also, ApacheAxis2 is a
framework supporting many protocols, including
SOAP (Single Object Access Protocol) for
exchanging information in a decentralized
distributed environment. We refer to SOAP,
because “web services usually use SOAP over
HTTP” as mentioned by [15].
Some years ago, speaking about the future of
software reliability engineering, Lyu said [14]: “the
traditional solution that software designers adopted
– carefully elicit change requests, prioritize them,
specify them, design changes, implement and test,
then redeploy the software – is no longer viable.”
Nowadays, agile methodologies based on software
components, including open source, are used to deal
with rapidly software releasing, increasing
reliability and diminishing the software costs.
According to Wasserman, “the most heavily used
websites are characterized by high reliability, high
availability, high security, and rapid interactive
response”. The discussion, in [26], is oriented to the
following design principles: abstraction,
modularity, multi layer architecture, and logging for
analyzing and testing. It is important to notice that
these principles are independent on the web
services provided by the web application.
The abstraction is used in all web-application life
cycle [19], [26]: requirements’ specification (use
case diagrams, scenarios, work flow models,
conceptual data models etc.), project design (by
objects: images/audio/video, menus, buttons, text
fields etc.), coding (based on templates), testing
(failure trees, root cause analysis, etc.).
Modularity promotes the component-based
paradigm and the reuse principle, a smart usage of
reusable components for constructing quality
software by reducing the verification costs,
increasing the software reliability, and reducing the
development time [1].
Recently, the application software follows a multi-
layer architecture, being developed similar as some
parts of the operating systems. Three-tier
architecture is based on the following entities:
client, server, and database. As Wasserman said in
[26], web applications have “well-known and
widely followed n-tier site architecture” based on
pattern design (configuration modes described
using XML or other pattern languages), plug-ins
(assuring an extensible architecture), with a

modular structure using a specific user interface
(based on languages and technologies like HTML,
Flash, Javascript, etc.).
For analyzing and testing web applications, there
are available a large collection of tools
(components), ready to be embedded into the web
application, or activated in order to monitor
different aspects related to the website activity.
These tools generate log files useful for “studying
system performance, identifying errors, and
determining general patterns of use”, as mentioned
in [26].
Web services are offered by different web servers
for specific activities. This is why Chu & Qian, in
[3], said: “e-business application development has
certain characteristics that make it different from
traditional software development”. This observation
is also valid for other fields asking for high security
assurance.
According to [3], the following requirements should
be taken into account for specific web applications,
like those from e-business field: service
composition (developed based on a complete
system model), formal semantics (in order to use
automated tools for service design and verification),
and systematic service design methodology (for
supporting service reuse). In this way, service reuse
at different levels of granularity is also provided.
Zaupa et al. [25], using the product line concept,
proposed a web application development strategy
oriented on services. In this manner, there are three
stages to be followed during the development
process: 1) Application domain definition; 2)
Services development, and 3) Application
generation.
The set of requirements has to be stable when
classical software development methodologies will
be used [19]. However, in an agile framework, the
requirements of a web application could be easy
updated during the starting period of any iteration
(when applying an iterative prototyping approach).
The above three stages can be iterated when an
agile methodology is used and will consider the
requirements obtained in one of the following
methods: classical, using UML notation,
navigation-based templates, hypermedia modeling
based on object thinking, and other ad-hoc, but
documented models.
In order to decrease the number of faults (local or
sub-network faults), the software team have to be
experienced with existing vulnerabilities and
security improvement mechanisms. Such aspects
will be detailed in the next section.
Another important aspect of web applications deals
with interoperability. Many web applications accept
as input and produce as output different objects. In

SSARS 2009
Summer Safety and Reliability Seminars, July 19-25, 2009, Gdańsk-Sopot, Poland

 17

order to be used/viewed/printed/listen, the object
format will be a known one, and secure plug-in
components will be available for clients. Here, we
think about a web application in a multi server –
multi client architecture. The multi server
architecture is required for increasing reliability and
availability by sharing connections (in a round-
robin fashion and/or by load balancing). This is also
the case of all software intensive systems where the
availability is an important quality attribute [16],
[20].
Web application robustness is another quality
requirement: “the property of a system or a
component that is totally correct in respect to a
complete specification, thus its behavior is
predictable for all possible operational
environments”, as defined in [2]. In order to obtain
a robust web application, software engineering
plays an important role. The analysis of robustness
can proceed according to some methods, like those
discussed in [2], but for critical applications like e-
business or e-campus total management, the
operational environment, including the security
profile will be simulated in order to test all
specified requirements.

3. Software vulnerabilities

If omitting the failures generated by cyber attacks,
we refer to the intrinsic reliability. In large, the
software reliability covers also aspects related with
security holes that permit to attackers the crashing
of the web application. These security holes are
generated by software vulnerabilities as defined in
the following. Software vulnerability deals with
insecure programming and the possible insertion,
by mistake, of the following classes of bugs [1]:
• memory-management (buffer/stack overflow,

format string vulnerability, boundary condition
checking);

• concurrency-management (e.g. race condition
involving a security check);

• I/O-management (e.g. input validation mistake,
SQL injection, incomplete application protocol
validation and verification);

• inconsistent integration of security technologies
(e.g. configuration errors, environmental errors,
incomplete access control procedures);

• numerical inconsistencies (e.g. integer
overflow, division by zero, XOR based
encryption);

• vulnerable entry points (command-line
parameters, the environment array of strings,
default input files, default passwords, inherited
file data structures, inherited attributes when

working with extended classes, incorrect
specification of web graph nodes).

There are possible mistakes not only during design,
but also during testing and implementation phases.
Environmental and administrative mistakes are
common when speaking about web-servers.
The vulnerabilities are possible to be identified: (1)
manually (by experts), (2) automated (by bottom up
and/or top down testing) (3) by black box testing,
(4) by white-box analysis, (5) using scanners, and
(6) combined various methods. The software
trustability will be increased by testing using
environment perturbation (taken different actions
on files, other processes, network etc.).
According to [11], when coordinated security
attacks are identified, “additional protection
mechanisms such as closing connections over a
wide area together with longer term measures such
as changing cryptographic keys” are required for
such faults. Non-local fault tolerance can be
implemented using a specialized cryptographic
protocol implemented on a cluster of servers.
If the development is based on the component-
based approach, and inadequately secure
components are embedded, the wrapping technique
will be used for the components accommodation.
Such an approach was described early in [18]:
“design means of masking or of detecting and
recovering from, the security errors which might
arise”, and used also for the projected presented in
[1].
In order to minimize the security type
vulnerabilities, the prevention of the cyber attacks is
the best strategy and may use the following
technologies [15]: security tokens, digital
signatures, encryption, and other security tools
according to the security management procedure.
Taking into account the above classes of bugs and
the mentioned security technologies, the following
types of web application attacks will be rejected:
imposture (impersonation), repudiation (refusing
acknowledgment), information disclosure (without
permission), information altering, denial of
services, gaining the privilege of administrators or
owner applications.
According to Guo & Sampath [8], the following
classes should be taken into consideration: data
storage class covering all possible faults related to
data structures, logic faults generated during
implementing algorithms and the application
control flow (some of them being related to
session/paging faults, inconsistent browser
interaction parsing faults, mistakes in coding
encoding/decoding and encryption/decryption
algorithms), data input faults generated by input
validation mistakes related to files and forms,

Albeanu Grigore, Averian Alexandru, Duda Iordan
Towards web applications reliability engineering

 18

appearance faults generated by inappropriate
coding for controlling the display of the web-pages,
and linking faults due to mistakes in controlling the
transfer to different locations in the World Wide
Web (URL – Uniform Resource Locator). The last
class is reach for the case of web applications
working with URL data bases. Comparing the two
classifications mentioned above we found that [1] is
enough rich containing also cookies’ manipulation,
communication encryption, user authentication,
account management, and accessing/using
resources without permission.
During a web application a model that accurately
describes the vulnerabilities is required. As
mentioned by [1], “the most used vulnerability
models use VCG (Vulnerability Cause graphs),
C/DFG (Control/Data Flow Graphs), and decision
trees”. For the web application investigated the
VCG approach was used which is similar to root
cause analysis method. Other methods uses FMEA
and soft computing techniques as those described in
[2].
A global analysis considers both hardware and
software fault categories when studying the web
application reliability [13], [14], [17]. A separate
analysis can be developed in the case of software
faults only.
In the next section, the SMERFS [7] software was
used to analysis the inter-failure data collected for a
web application implementing a virtual campus.

4. Web-based software reliability

4.1. Network reliability and performability

As Pickering identified in [16], an important factor
influencing the web-server reliability is the network
reliability and availability. As measures of
availability the most important are the connectivity
and the performability. When a failure occurs, the
network could not be able to perform at the same
parameters as when working without failure. In this
way, there is a strong relation between the network
failure performability and the network reliability.
Various services are provided over multiple
interconnected networks with different technologies
and infrastructure by different suppliers (providers).
Modelling the network as an undirected simple
graph, the network reliability is studied, to assure,
at least theoretically, a solution to the following
problems: (1) Compute the probability that there is
a path between two distinguished vertices a, and b
[terminal connectivity]; (2) Compute the probability
that all vertices remain connected. It is clear that
both combinatorial and statistical methods are
mixed in order to compute the network reliability.

Analyzing network reliability is more important for
the case of content replications motivated by
requests for decreasing the answer time to a large
number of simultaneously queries.
Considering the most used types of distributed web-
servers (DWS) the following architectures are
possible: cluster based (with virtual IP address
depending on the web service visible to the clients,
and a real IP address of the cluster nodes (CN), but
hidden to clients), virtual cluster (the nodes sharing
the same IP, and only one node will keep a message
from clients), and distributed cluster (every node
having its IP, and the message being redirected by a
dynamic procedure applied related to the Domain
Name System). The redistribution is implemented
in a switching (SW) system.
The web based system reliability can be computed
as in the case of serial systems: R(DWS) = R(SW)
x R(CN). It is clear that R(CN) depends on the
cluster topology, but experimentally we found that
the estimation of R(CN) depends also on the
method of content mirroring, the best results being
obtained for complete replication.
Suppose G represents the network of cluster nodes
that can perform if and only if it is connected, and
Gr a random subgraph of G. If every edge e of G
has associated a failure probability pe, then the
probability that Gr remains connected is the same as
G still perform. The network reliability computation
can be realized using the classical results presented
in [21] and [22].
The web applications are composed by a large
number of software components, many of them
used in a reusable manner. The most used protocol
for inter-component communication is the client-
server mechanism. In this case, a component-
dependency graph is built, and the component
reliability is estimated (for white-box components)
or approximated (in the case of black-box
components) based on its average execution time,
using the methodology described by Hu [10]. Based
on the architecture style (sequencing, looping,
concurrency supporting, fault-tolerant style,
refinement, or a mixed style), and taking into
account the transition probabilities among the
components (estimated during a benchmarking
period) the overall system reliability can be
computed [5], [23], [24].
For the virtual campus project was found that tree
based architecture provides a high degree of
reliability, and the computing of architecture
reliability was fast using the MFST method [12].
For a cluster having five nodes the best
performance was obtained in a partition of type (2,
3), being also a strong fault-tolerant architecture.
Actually, the web application is distributed using an

SSARS 2009
Summer Safety and Reliability Seminars, July 19-25, 2009, Gdańsk-Sopot, Poland

 19

architecture of type (1, 1), the availability of service
being 99%.

4.2. Web application testing

It is a general assumption that fault removal is
successful in the case of many software reliability
growth models, as already Littlewood & Strigini
remarked in [13]. For web applications, only faults
generating security holes are successfully removed
(it is imperative necessary).
When speak about web application testing, there are
two interpretations. The first one is related to
software validation by [5], [6], [8], [23]:
• establishing the level of usability (offering an

easier navigation; conformity with standards
related to content organization, and the
visibility of the navigation graph);

• checking for browser/platform compatibility
(for assuring also the portability at operating
system level, and provide wide access to the
web site, including by mobile technologies);

• assuring functionalities (the content of pages
inclusive the scripts is syntactically correct and
free of bugs, and all links are active; all inputs
are validated, cookies are checked for
correctness and security; if a database is
maintained then testing all aspects related to
storage, code, protocols is required);

• communication interface testing (checking the
network/cluster connectiveness and the
correctness of data transportation, including
encryption protocols and acknowledgement
mechanism);

• load testing (in order to establish the level of
performance under stress testing).

• vulnerability scanning for security assessment
(as mentioned above and detailed by [1]);

The second one addresses the unit testing (by
assertions on some regions of code – for assuring
fault prevention) and the debugging process
connected to failures, mainly by load testing (under
heavy exposure). This kind of testing is useful to
estimate the software reliability, and a journal of
failures (type, level of severity, etc.), bugs
(identifier, type, location, if possible to generate
security holes, …), as a time series database useful
to establish both inter-failure time and cumulative
numbers of failures in order to support fault/failure
forecasting, will be recorded.
Even already established a user profile, the web
application is, in general, open to many users. This
is why we decompose the user profile in a public
profile and a private profile. It is compulsory to
release a bug-free web application according to the
public profile, even the testing was stopped for the

private profile because of some schedule
constraints.
When working with components, and for some of
them creating some wrappers, a regression testing is
required. In general, web applications are developed
in an agile methodology (mainly extreme
programming, or adaptive software development),
and an agile testing approach is selected. In this
case, the analysis of collected data is organized in
batches, every batch corresponding to software life
cycle iteration.

Table 1. Time between failure data along three
builds

Build

#Failure Time between failure data
[days]

1 19 1, 2, 1, 3, 5, 1, 2, 4, 8, 6, 11,
17, 19, 35, 22, 52, 28, 62, 74

2 18 1, 1, 1, 2, 1, 3, 2, 4, 3, 14, 18,
11, 33, 24, 53, 71, 59, 72

3 16 1, 1, 1, 1, 2, 2, 5, 13, 12, 10,
21, 28, 38, 58, 74, 57

4.3. Web application reliability

In the following the web application reliability is
analyzed using standard software reliability models
[17], as those provided by SMERFS [7]. The web
application implementing the university virtual
campus was developed during three versions/builds.
For all versions, the time series corresponding to
test debugging were collected (see Table 1), and
analyzed using SMERFS.

Figure 1. SRGM analysis / Build 1

Albeanu Grigore, Averian Alexandru, Duda Iordan
Towards web applications reliability engineering

 20

Figure 2. SRGM analysis / Build 2

Figure 3. SRGM analysis / Build 3

Table 2. Successfully applicability results

Build

Statistics Model
1

Model
2

Model
3

Model
4

Model
5

1

Accuracy 42.98 44.07 48.82 43.94 48.82
Bias 0.43 0.59 0.23 0.46 0.23
Noise 2.79 1.97 0.00 2.46 0.00
Trend 0.19 0.10 0.35 0.14 0.35

2

Accuracy 41.93 44.15 51.68 42.28 0
Bias 0.5 0.64 0.36 0.51 0
Noise 4.08 2.64 0.00 3.23 0
Trend 0.3 0.18 0.56 0.21 0

3

Accuracy 35.46 36.89 43.92 36.53 43.92
Bias 0.39 0.63 0.55 0.46 0.55
Noise 2.78 1.91 0.00 2.64 0.00
Trend 0.18 0.15 0.25 0.17 0.25

During analysis, five models were selected, namely:
Model 1 - Moranda's geometric model (assuming
that the software is never error-free and as
debugging progresses the faults become harder to
detect, with the detection rate forming a geometric
progression and being constant between error
occurrences), Model 2 – Quadratic Littlewood-
Verrall, Model 3 – Musa’s basic, Model 4 – Musa’s
logarithmic, and Model 5 – Nonhomogeneous
Poisson Process model (for execution time).

For every model the statistics concerning accuracy,
bias, noise, and trend are presented in Table 2.
These statistics follow the mathematical formulas
described in the SMERFS manual and its
references, and there are not described here. The
results were obtained using the Maximum
Likelihood Estimation method [14], [17]. In the
Table 3, there are the most important estimates
obtained during models’ execution: IIF – Initial
Intensity Function, CIF – Current Intensity
Function, PrfLvl – the “Purity” Level (the ratio of
the changing in the hazard rate function from the
starting point to the ending and the initial value),
MTBNF – Current Mean Time Between Next
Failure, and KS – the measure for Goodness-of-fit
calculation. Using the Goodness-of-fit measure we
obtain three well-suited models for data fitting:
Quadratic Littlewood-Verall, Musa’s Basic, and the
Nonhomegeneous Poisson Process model. These
can also be identified in the pictures giving the raw
and predicted data for the third builds of the project
(Figures 1-3). It can be observed that Musa’s
logarithmic model is most pessimistic, while the
best prediction is obtained using the fifth model, for
short intervals of time.

Table 3. Successfully estimates

Build

Estimates Model
1

Model
2

Model
3

Model
4

Model
5

1

IIF 1.175 1.170 0.210 0.772 0.210
CIF 0.012 0.020 0.005 0.013 0.005
PrfLvl 0.989 n/a 0.978 1.000 0.978
MTBNF 93.9 45.9 215.0 406.9 n/a
KS 0.336

(no)
0.285
(yes)

0.167
(yes)

0.311
(no)

0.167
(yes)

2

IIF 2.00 1.886 0.203 1.189 0.203
CIF 0.009 0.019 0.003 0.010 0.003
PrfLvl 0.995 n/a 0.984 1.000 0.984
MTBNF 129.2 47.1 310.3 734.5 n/a
KS 0.35

(no)
0.23
(yes)

0.174
(yes)

0.38
(no)

0.174
(yes)

3

IIF 2.002 2.011 0.194 1.180 0.194
CIF 0.009 0.019 0.004 0.010 0.004
PrfLvl 0.995 n/a 0.978 1.000 0.978
MTBNF 134.2 47.1 233.0 779.3 n/a
KS 0.415

(no)
0.272
(yes)

0.172
(yes)

0.413
(no)

0.172
(yes)

A multicriteria analysis, based on direct analysis of
the performance matrix, was conducted in order to
establish the best model for the project in order to
understand its reliability evolution.

Table 4. The model ranking

Build

Statistics Model
1

Model
2

Model
3

Model
4

Model
5

1

Accuracy 1 3 4 2 4
Bias 3 5 1 4 1
Noise 3 1 0 2 0
Trend 3 1 4 2 4
Overall 1 1 4 1 4

SSARS 2009
Summer Safety and Reliability Seminars, July 19-25, 2009, Gdańsk-Sopot, Poland

 21

2

Accuracy 1 3 4 2 0
Bias 2 4 1 3 0
Noise 3 1 0 2 0
Trend 3 1 4 2 0
Overall 1 1 4 1 0

3

Accuracy 1 3 4 2 4
Bias 1 5 3 2 3
Noise 3 1 0 2 0
Trend 3 1 4 2 4
Overall 1 3 4 1 4

Even Model1 and Model4 were appreciated by
SMERFS with rank 1 (Table 4), the Model3 proved
an appropriate behavior when its predictions were
compared with the real evolution of the project
under study. Combinations of models [9] are also
possible, when they are shared basic common
assumptions.

5. Concluding remarks

This paper considers a special case of distribute
software, namely the web applications, which ask
not only for basic quality characteristics of
software, but also have to be vulnerabilities-free,
that means be able to prevent, detect and recover a
good state after a possible cyber attack.
Starting with the development of a virtual campus
for a large size university the software team had to
solve important problems related to web application
software engineering, time releasing constraints and
to provide a high quality product. The most part of
practical aspects useful for finalizing such a project
were covered and outlined above.
Finally, we appreciate that a guide of best practices
for web application software reliability engineering
is necessary to be developed in short time to be
available for students in software engineering,
practitioners, and customers.

Acknowledgement.

The present investigation has been realized
according to the research program of the Faculty of
Mathematics-Informatics at Spiru Haret University,
Romania.

References

[1] Albeanu, G., Madsen, H. & Averian, A. (2009).
On the influence of software vulnerabilities on
software reliability: The case of open source
component based software (submitted to
ESREL’09 Conference).

[2] Calori, I.C. & Stalhane, T. (2007). FMEA and
BBN for robustness analysis in web-based
applications, In Aven & Vinnem (eds). Risk,
Reliability and Societal Safety, Taylor & Francis
Group, London, 2341-2347.

[3] Chu, W. & Qian, D. (2009). Design Web
Services: Towards Service Reuse at the Design
Level. Journal Of Computers, 4, 3, 193-200.

[4] Davidson, J.D. & Coward, D. (1999). Java™
Servlet Specification, v2.2, Sun Microsystems.

[5] Davila-Nicanor, L. & Mejia-Alvarez, P. (2004).
Reliability Improvement of Web-Based
Software Applications. Proceedings of the
Fourth International Conference on Quality
Software, CINVESTAV-IPN, Zacatenco,
Mexico, 180- 188.

[6] Eaton, C. & Memon, A. (2004). Evaluating Web
Page Reliability across Varied Browsing
Environments. Proceedings of the 15th IEEE
International Symposium on Software Reliability
Engineering (ISSRE'04), France.

[7] Farr, W. (2003). http://www.slingcode.com/
smerfs/compare.php

[8] Guo, Y. & Sampath, S. (2008). Web Application
Fault Classification - An Exploratory Study.
Proceedings of ESEM’08, October 9–10, 2008,
Kaiserslautern, Germany, 3003-305,
http://doi.acm.org/10.1145/1414004.1414060.

[9] Hsu, C.J. & Huang, C.Y. (2009). Reliability
Analysis Using Weighted Combinational
Models for Web-based Software. To appear in
Proceedings of the 18th International World
Wide Web Conference (WWW 2009), April 20–
24, 2009, Madrid, Spain, 1131-1132.

[10] Hu, H. (2007). Reliability Analysis for
Component-based Software System in Open
Distributed Environments. International Journal
of Computer Science and Network Security, 7, 5,
193-202.

[11] Knight J.C. & Elder, M.C. (2001). Fault
Tolerant Distributed Information Systems.
Proceedings of the 12th International Symposium
on Software Reliability Engineering, IEEE, 132-
137.

[12] Lin, M.S., Chen, D.J. & Horng, M.S. (1999).
The Reliability Analysis of Distributed
Computing Systems with Imperfect Nodes. The
Computer Journal, 42, 2, 129-141.

[13] Littlewood, B. & Strigini, L. (2000). Software
Reliability and Dependability: a Roadmap.
Proceedings of the Conference on the Future of
Software Engineering, 175-188.

[14] Lyu, M.R. (2007). Software Reliability
Engineering: A Roadmap. Proceedings of
FOSE, 153-170.

[15] Maeda, T., Nomura, Y. & Hara, H. (2003).
Security and Reliability for Web Services,
FUGITSU Sci. Tech. J., 39, 2, 214-223.

[16] Pickering, 3. (2005). Web Server Reliability,
http://www.ipcortex.co.uk/wp/app-reliability3.pdf,
Ipcortex.

Albeanu Grigore, Averian Alexandru, Duda Iordan
Towards web applications reliability engineering

 22

[17] Pham, H. (2003). Recent Studies in Software
Reliability Engineering. In Pham Hoang (ed.),
Handbook of Reliability Engineering: 285-302,
London: Springer.

[18] Randell, B. & Dobson, J.E. (1986). Reliability
and Security Issues in Distributed Computing
Systems. IEEE Proceedings of the 5th
Symposium on Reliability in Distributed
Software and Database Systems, Los Angeles,
113-118.

[19] Schneidewind N.F. (2003). Life Cycle Core
Knowledge Requirements for Software
Reliability Measurement, Reliability Review.
The R&M Engineering Journal, 23, 2, 18-29.

[20] da Silva Filho, A. M. (2005). Toward More
Available Software-Intensive Systems. The Fifth
International Requirements Engineering for
High-Assurance Systems Workshop, http://www.
sei.cmu.edu/community/rhas-workshop/2005/
silvafilho.pdf.

[21] Shier, R.D. (1991). Network Reliability and
Algebraic Structures, Clarendon Press, Oxford.

[22] Shooman, M.L. (2002). Reliability of Fault-
Tolerant Computing Systems and Networks. The
Journal of Reliability Analysis Center, 4, 1-7 & 11-
12.

[23] Suri, P.K. & Bharat, B. (2007). Reliability
Evaluation of Web Based Software.
International Journal of Computer Science and
Network Security, 7, 9, 151-156.

[24] Tsai, W.T., Zhang, D., Chen, Y., Huang, H.,
Paul, R. & Liao, N. (2004). A Software
Reliability Model For Web Services. 8th
IASTED International Conference on Software
Engineering and Applications, Cambridge, MA,
144 - 149.

[25] Zaupa, F., Gimenes, I.M.S., Cowan, D., Alencar,
P. & Lucena, C.J.P. (2008). A Service-oriented
Process to Develop Web Applications. Journal
of Universal Computer Science, 14, 8, 1368-
1387.

[26] Wasserman, A.I. (2005). Principles for the
Design of Web Applications. http://www.se-
hci.org/bridging/interact2005/07_Wasserman.pd
f

