Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The objective of the work was to investigate the possibility of application of carbon and bentonite nanoparticles in carboxylated acrylonitrile-butadiene rubber (XNBR) and the related effects of the nanofi llers on the structure, as well as mechanical and barrier properties, of the resulting composites. The composites were designed for use in protective clothing and gloves. XNBR compounds were modifi ed with 2 phr of graphene fl akes, graphene oxide, or modifi ed bentonite, and crosslinked with sulfur-accelerator system. Rubber compounds were prepared using a conventional method with a laboratory rolling mill. The composites were studied in terms of structure (WAXS), surface morphology (AFM), the presence of functional groups (ATR-FTIR) barrier properties against chemical substances (mineral oil) and swelling properties, as well as mechanical properties (abrasion resistance and tensile strength). The composites were characterized by very high resistance to oil permeation (breakthrough time >480 min). The type of nanofi ller added to the XNBR blend in the amount of 2 phr did not signifi cantly affect mechanical parameters.
Czasopismo
Rocznik
Tom
Strony
15--23
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Central Institute for Labour Protection – National Research Institute, Department of Personal Protective Equipment, Wierzbowa 48, 90-133 Lodz, Poland
autor
- Lodz University of Technology, Institute of Polymer and Dye Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland
autor
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Tamka 12, 91–403 Lodz, Poland
Bibliografia
- 1. Gołębiewski, J. (2004). Polymer nanocomposites. Structure, methods of preparation and properties. Przem. Chem 83 (1), 15–20.
- 2. Alexandre, M. & Dubois, P. (2000). Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R. Rep. 28(1–2), 1–63. DOI: 10.1016/S0927-796X(00)00012-7.
- 3. Sadasivuni, K.K., Ponnamma, D., Thomas, S. & Grohens, Y. (2014). Evolution from graphite to graphene elastomer composites. Prog. Polym. Sci. 39(4), 749–780. DOI: 10.1016/j. progpolymsci.2013.08.003.
- 4. Stephen, R., Ranganathaiah, C., Varghese, S., Joseph, K. & Thomas, S. (2006). Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer 47, 858–870. DOI: 10.1016/j.polymer.2005.12.020.
- 5. Ponnamma, D., Maria, H.J., Chandra, A.K. & Thomas, S.(2013). Rubber nanocomposites: latest trends and concepts. In book: Advances in Elastomers II Composites and Nanocomposites, Chapter: Rubber Nanocomposites: Latest Trends and Concepts, Publisher: Springer, Editors: P. M. Visakh, Sabu Thomas, Arup K. Chandra, Aji. P. Mathew, 69–107. DOI: 10.1007/978-3-642-20928-4_3.
- 6. Yaragalla, S., Sindam, B., Abraham, J., Raju, K.J., Kalarikkal, N. & Thomas, S. (2015). Fabrication of Graphite-Graphene-Ionic liquid Modifi ed Carbon nanotubes filled Natural rubber thin Films for Microwave and Energy storage Applications. J. Polym. Research, 22(7), 1–10. DOI:10.1007/s10965-015-0776-5.
- 7. Mao, Y., Wen, S., Chen, Y., Zhang, F., Panine, P., Chan, T.W., Zhang, L., Liang, Y. & Liu, L. (2013). High performance graphene oxide based rubber composites. Scientifi c Reports 3(2508). DOI:10.1038/srep02508.
- 8. Debelak, B. & Lafdi, K. (2007, May). Use of exfoliated graphite filler to enhance polymer physical properties [Full text]. Carbon. 45(9), 1727–1734. Retrieved April 10, 2014, from Science Direct: www.sciencedirect.com. DOI: 10.1016/j.carbon.2007.05.010.
- 9. Jang, B.Z. & Zhamu, A. (2008). Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J. Mater. Sci. 43(15), 5092–51013. DOI: 10.1007/s10853-008-2755-2.
- 10. Kang, H., Zuo, K., Wanga, Z., Zhang, L., Liu, L. & Guo, B. (2014, February). Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier and mechanical performance [Full Text]. Compos. Sci. Technol. 92(2014), 1–8. Retrieved September 10, 2017, from Science Direct: www.sciencedirect.com. DOI: 10.1016/j.compscitech. 2013.12.004.
- 11. Wang, J., Jia, H., Tang, Y., JI, D., Sun, Y. & Gong, X. (2013). Enhancements of the mechanical properties and thermal conductivity of carboxylated acrylonitrile butadiene rubber with the addition of graphene oxide. J. Mater. Sci. 48(4), 1571–1577. DOİ:10.1007/s10853-012-6913-1.
- 12. Barton, A.F.M. (1975). Solubility parameters. Chem. Rev. 75(6), 751–753.
- 13. Hansen, C.M. (2004). Aspects of solubility, surfaces and diffusion in polymers. Prog. Org. Coat. 51(1), 55–66. DOI: https://doi.org/10.1016/j.porgcoat.2004.05.002.
- 14. Krzemińska, S., Irzmańska, E., Rzymski, W., Borkowska, U., Malesa, M. & Piłaciński, W. (2013). Polish Patent No. 219 209 B1. Warsaw: Patent Office of the Republic of Poland.
- 15. Przybyszewska, M. & Zaborski, M. (2012). Polish Patent No. 210461. Warsaw: Patent Office of the Republic of Poland.
- 16. Przepiórkowska, A. & Prochoń, M. (2013). Polish Patent No. 213 411 B1. Warsaw: Patent Offce of the Republic of Poland.
- 17. Krzemińska, S., Rzymski, W.M., Malesa, M., Borkowska, U. & Oleksy, M. (2016). Gloves against mineral oils and mechanical hazards. Int. J. Occup. Saf. Ergo. 22(3), 350–359. DOİ: 10.1080/10803548.2015.1136111.
- 18. Irzmańska, E. & Dyńska-Kukulska, K. (2012). Permeation of mineral oils through protective glove materials in view of literature data and authors’ own studies. Rev. Anal. Chem. 31(2), 113–122. DOI: 10.1515/REVAC.2011.121.
- 19. Krzemińska, S. & Rzymski, W.M. (2011). Barrier properties of hydrogenated acrylonitrile-butadiene rubber composites containing modified layered aluminosilicates. Mater. Sci-Poland. 29(4), 285–291. DOI: 10.2478/s13536-011-0046-0.
- 20. Mooney, M.J. (1940). The Thermodynamics of a Strained Elastomer. I. General Analysis. J. Appl. Phys. 11(9), 582–92.
- 21. Rivlin, R.S. (1947). Torsion of a rubber cylinde. J. Appl. Phys. 18, 444-449.
- 22. Ju, H.M., Huh, S.H., Choi, S.H. & Lee, H.L. (2014). Structures of thermally and chemically reduced graphene. Mater. Lett. 64(3), 357–360. DOI: 10.1016/j.matlet.2009.11.016.
- 23. Alanyalioğlu, M., Segura, J.J., Oró-solè, J. & Casañ-Pastor, N. (2012). The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon. 50(1), 142–152. DOI: 10.1016/j. carbon.2011.07.064.
- 24. Aina, Z.N. & Azura, A.R. (2011). Effect of different types of filler and filler loadings on the properties of carboxylated acrylonitrile–butadiene rubber latex fi lms. J. Appl. Polymer Sci. 119(5), 2815–2823. DOI: 10.1002/app.32984.
- 25. George, S.C., Rajan, R., Aprem, A.S., Thomas, S. & Kim, S.S. (2016). The fabrication and properties of natural rubber-clay nanocomposites. Polymer Testing, 51, 165–173. DOİ: doi.org/10.1016/j.polymertesting.2016.03.010.
- 26. Laskowska, A., Zaborski, M., Boiteux, G., Gain, O., Marzec, A. & Maniukiewicz, W. (2014). Ionic elastomers based on carboxylated nitrile rubber (XNBR) and magnesium aluminum layered double hydroxide (hydrotalcite). eXPRESS Polymer Letters 8(6), 374–386. DOI: 10.3144/expresspolymlett.2014.42
- 27. Satyanarayana, M.S, Bhowmick, A.K. & Kumar, K.D. (2016). Preferentially fixing nanoclays in the phases of incompatible carboxylated nitrile rubber (XNBR)-natural rubber (NR) blend usin thermodynamic approach and its effect on physico mechanical properties. Polymer 99, 21–43. DOI: http://dx.doi.org/10.1016/j.polymer.2016.06.063.
- 28. Wypych, G. (2004). Handbook of plasticizers. Chem Tec Publishing. 167.
- 29. Lara, J., Zimmermann, F., Drolet, D., Hansen, C.M., Chollot, A. & Monta, N. (2017). The Use of the Hansen Solubility Parameters in the Selection of Protective Polymeric Materials Resistant to Chemicals. Int. J. Current Research 9(03), 47860–47867. HAL Id: hal-01639526.
- 30. Varghese, H., Bhagawan, S.S. & Thomas, S. (1999). Effects of blend ratio, crosslinking systems and fillers on the morphology, curing behavior, mechanical properties, and failure mode of acrylonitrile butadiene rubber and poly(ethylene-co-vinyl acetate) blends. J. Appl. Polymer Sci. 71(14), 2335–2364. DOI: 10.1002/(SICI)1097 4628(19990404)71:14<2335::AID--APP7>3.0.CO;2-5.
- 31. Krzemińska, S., Rzymski, W., Smejda-Krzewicka, A., Lipińska, L., Woluntarski, M. & Oleksy, M. (2016). Patent Application No.P.419470. Warsaw: Patent Office of the Republic of Poland
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a02ecb5-a87d-41d0-a614-3ac1e214e60f