PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generalized slow growth of special monogenic functions

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper we study the generalized slow growth of special monogenic functions. The characterizations of generalized order, generalized lower order, generalized type and generalized lower type of special monogenic functions have been obtained in terms of their Taylor series coefficients.
Wydawca
Rocznik
Strony
67--79
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Department of Mathematics, Jaypee University of Engineering and Technology, Guna – 473226 (M. P.), India
Bibliografia
  • [1] M. A. Abul-Ez and D. Constales, Basic sets of polynomials in Clifford analysis, Complex Var. Theory Appl. 14 (1990), no. 1-4,177-185.
  • [2] M. A. Abul-Ez and D. Constales, Linear substitution for basic sets of polynomials in Clifford analysis, Port. Math. 48 (1991), no. 2,143-154.
  • [3] M. A. Abul-Ez and R. De Almeida, On the lower order and type of entire axially monogenic function, Results Math. 63 (2013), 1257-1275.
  • [4] R. De Almeida and R. S. Krausshar, On the asymptotic growth of entire monogenic functions, Z. Anal. Anwend. 24 (2005), no. 4, 791-813.
  • [5] D. Constates, R. De Almeida and R. S. Krausshar, On the growth type of entire monogenic functions, Arch. Math. (Basel) 88 (2007), 153-163.
  • [6] D. Constales, R. De Almeida and R. S. Krausshar, On the relation between the growth and the Taylor coefficients of entire solutions to the higher dimensional Cauchy-Riemann system in Rn+1, J. Math. Anal. App. 327 (2007), 763-775.
  • [7] V. G. Iyer, A property of the maximum modulus of integral functions, J. Indian Math. Soc. (N. S.) 6 (1942), 69-80.
  • [8] G. P. Kapoor and A. Nautiyal, Polynomial approximation of an entire function of slow growth, J. Approx. Theory 32 (1981), 64-75.
  • [9] 5. Kumar, Generalized growth of special monogenic functions, J. Complex Anal. 2014 (2014), Article ID 510232.
  • [10] S. Kumar and K. Bala, Generalized type of entire monogenic functions of slow growth, Transylv. J. Math. Mech. 3 (2011), no. 2, 95-102.
  • [11] S. Kumar and K. Bala, Generalized order of entire monogenic functions of slow growth, J. Nonlinear Sci. Appl. 5 (2012), no. 6, 418-425.
  • [12] S. Kumar and K. Bala, Generalized growth of monogenic Taylor series of finite convergence radius, Ann. Univ. Ferrara Sez. VII Sci. Mat. 59 (2013), no. 1, 127-140.
  • [13] S. Kumar and G. S. Srivastava, Maximum term and lower order of entire functions of several complex variables, Bull. Math. Anal. Appl. 3 (2011), no. 1, 156-164.
  • [14] S. Kumar and G. S. Srivastava, On the maximum term and lower order of entire monogenic functions, Transylv. J. Math. Mech. 6 (2014), no. 1, 29-38.
  • [15] M. N. Seremeta, On the connection between the growth of the maximum modulus of an entire function and the moduli of the coefficients of its power series expansion, Amer. Math. Soc. Transl. Ser. 2 88 (1970), 291-301.
  • [16] G. S. Srivastava and S. Kumar, On the generalized order and generalized type of entire monogenic functions, Demonstr. Math. 46 (2013), no. 4, 663-677.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5a0061c6-a071-4c11-a77c-7e4654ab4b8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.