PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Preliminary Study On the Electrical Signatures of Some Iron and Stony Meteorites and Their Dependence On Nickel Content

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study is considered as an exploratory study of electrical properties of meteorites at variable current frequencies, called the electrical signature. The electric resistivity has been measured at different frequencies, varying between 1 and 100 KHz for some iron meteorites (Mundrabilla and Gibeon meteorites), stony meteorite samples (NWA 869, NWA 7629 and Ghubara) and Fe-Ni alloys, of known Ni concentration, which have been prepared and used as standards to be compared with the studied meteorites. In addition, SEM studies supported by EDX technique have been applied. The SEM and EDX displays enabled us to obtain the chemical composition and internal structural fabrics of the studied samples. Porosity and density (bulk and grain densities) have also been measured for both types of meteorites. Porosity values of the studied meteorites are very low (∅ ≤ 3%) and correspond to micro vugs and cracks. The grain density of non-weathered samples varies from 3.48 g/cm3 for the stony meteorites to 7.91 g/cm3 for the iron meteorites. The obtained electrical signatures are diagnostic for each type and can be used to detect quantitatively the concentration of Ni. The electrical signature of stony meteorites is much simpler than that of iron meteorites, and simpler signatures have been obtained at higher Ni concentrations.
Czasopismo
Rocznik
Strony
1942--1969
Opis fizyczny
Bibliogr. 59 poz.
Twórcy
autor
  • Department of Geophysical Sciences, National Research Center, Cairo, Egypt
autor
  • Aix-Marseille Université, CNRS, IRD, CEREGE UM34, Aix en Provence, France
Bibliografia
  • Binns, R.A. (1967), Cognate xenoliths in chondritic meteorites: examples in MezoMadras and Ghubara, Geochim. Cosmochim. Ac. 32, 3, 299-317, DOI: 10.1016/0016-7037(68)90017-3.
  • Bischoff, A., and T. Geiger (1995), Meteorites from the Sahara: Find locations, shock classification, degree of weathering, and pairing, Meteoritics 30, 1, 113-122, DOI: 10.1111/j.1945-5100.1995.tb01219.x.
  • Bland, P.A., F.J. Berry, T.B. Smith, S.J. Skinener, and C.T. Pillinger (1996), The flux of meteorites to the Earth and weathering in hot desert ordinary chondrite finds, Geochim. Cosmochim. Ac. 60, 11, 2053-2059, DOI: 10.1016/ 0016-7037(96)00125-1.
  • Bland, P.A., F.J. Berry, A.J.T. Jull, T.B. Smith, A.W.R. Bevan, J.M. Cadogan, A.S. Sexton, L.A. Franchi, and C.T. Pillinger (2002), 57Fe Mössbauer spectroscopy studies of meteorites: Implications for weathering rates, meteorites flux, and early solar system processes, Hyperfine Interact. 141, 3, 481-494, DOI: 10.1023/A:1022440217371.
  • Bland, P.A., L.E. Howard, D.J. Prior, J. Wheeler, R.M. Hough, and K.A. Dyl (2011), Earliest rock fabric formed in the solar system preserved in a chondrule rim, Nat. Geosci. 4, 244-247, DOI: 10.1038/ngeo1120.
  • Bogard, D.D., J.C. Huneke, D.S. Burnett, and G.J. Wasserburg (1971), Xe and Kr analyses of silicate inclusions from iron meteorites, Geochim. Cosmochim. Ac. 35, 12, 1231-1254, DOI: 10.1016/0016-7037(71)90113-X.
  • Britt, D.T., and G.J. Consolmagno (2003), Stony meteorite porosities and densities: A review of the data through 2001, Meteorit. Planet. Sci. 38, 8, 1161-1180, DOI: 10.1111/j.1945-5100.2003.tb00305.x.
  • Britt, D.T., D. Yeomans, K. Housen, and G. Consolmagno (2002), Asteroid density, porosity, and structure. In: W.F. Bottke, A. Cellino, P. Paolicchi, and R.P. Binzel (eds.), Asteroids III, University of Arizona Press, Tucson, 485- 500.
  • Buchwald, V.F. (1975), Handbook of Iron Meteorites, University of California Press, Berkeley.
  • Christie, J.M., D.T. Griggs, A.H. Heuer, G.L. Nord Jr., S.V. Radcliffe, J.S. Lally, and R.M. Fisher (1973), Electron petrography of Apollo 14 and 15 breccias and shock-produced analogs. In: Proc. 4th Lunar Sci. Conf., 365-382.
  • Consolmagno, G.J., D.T. Britt, and C.P. Stoll (1998), The porosities of ordinary chondrites: Models and interpretation, Meteorit. Planet. Sci. 33, 6, 1221- 1229, DOI: 10.1111/j.1945-5100.1998.tb01307.x.
  • Corrigan, C.M., M.E. Zolensky, J. Dahl, M. Long, J. Weir, C. Sapp, and P.J. Burkett (1997), The porosity and permeability of chondritic meteorites and interplanetary dust particles, Meteorit. Planet. Sci. 32, 4, 509-515, DOI: 10.1111/j.1945-5100.1997.tb01296.x.
  • Coulson, I.M., M. Beech, and W. Nie (2007), Physical properties of Martian meteorites: Porosity and density measurements, Meteorit. Planet. Sci. 42, 12, 2043-2054, DOI: 10.1111/j.1945-5100.2007.tb01006.x.
  • Crabb, J. (1983), On the sitting of noble gases in silicate inclusions of the El Taco iron meteorite (abstract). In: Lunar and Planetary Science XIV, Lunar and Planetary Institute, Houston, 134-135.
  • Cuzzi, J.N., R.C. Hogan, and K. Shariff (2008), Toward planetesimals: Dense chondrule clumps in the protoplanetary nebula, Astrophys. J. 687, 2, 1432-1447, DOI: 10.1086/591239.
  • Darling, D.J. (2003), The Universal Book of Astronomy: From the Andromeda Galaxy to the Zone of Avoidance, 584 pp.
  • Davison, Th.M., F.J. Ciesla, G.S. Collins, and D. Elbeshausen (2014), The effect of impact obliquity on shock heating in planetesimal collisions, Meteorit. Planet. Sci. 49, 12, 2252-2265, DOI: 10.1111/maps.12394.
  • DeLaeter, J.R. (1972), The Mundrabilla Meteorite Shower, Meteoritics 7, 3, 285- 294.
  • Dodd, R.T. (1981), Meteorites: A Petrologic-chemical Synthesis, Cambridge University Press, Cambridge, 368 pp.
  • Fegley, B. Jr. (1983), Primordial retention of nitrogen by terrestrial planets and meteorites, Proc. Lunar Planet. Sci. Conf. 13th, J. Geophys. Res. 88, A853- A868.
  • Flynn, G.J. (2004), Physical properties of meteorites and interplanetary dust particles: Clues to the properties of the meteors and their parent bodies, Earth Moon Planets 95, 1, 361-374, DOI: 10.1007/s11038-005-9025-y.
  • Flynn, G.J. (2014), Porosity as a significant factor for asteroid survival, Conference abstract Asteroids, Comets, Meteors, Helsinki.
  • Flynn, G.J., L.B. Moore, and W. Klöch (1999), Density and porosity of stone meteorites: Implications for the density, porosity, cratering, and collisional disruption of asteroids, Icarus 142, 1, 97-105, DOI: 10.1006/icar.1999.6210.
  • Gooding, J.L. (1986a), Clay-mineraloid weathering products in Antarctic meteorites, Geochim. Cosmochim. Ac. 50, 10, 2215-2223, DOI: 10.1016/0016- 7037(86)90076-1.
  • Gooding, J.L. (1986b), Weathering of stony meteorites. In: J.O. Annexstad, L.S. Shultz, and H. Wänke (eds.), Antarctica. International Workshop on Antarctic Meteorites, Lunar and Planet Inst., Houston Tex., LPI Tech Rep. 86-01, 48-54.
  • Grady, M.M. (2000), Catalogue of Meteorites, 5th ed., Cambridge University Press, Cambridge, 696 pp.
  • Hamano, Y., and K. Yomogida (1982), Magnetic anisotropy and porosity of antarctic chondrites, Mem. Nat. Inst. Polar Res. 25, 281-289.
  • Kieffer, S.W., and C.H. Simonds (1980), The role of volatiles and lithology in the impact cratering process, Rev. Geophys. 18, 1, 143-181, DOI: 10.1029/ RG018i001p00143.
  • Kohout, T., K. Havrila, J. Tóth, M. Husárik, M. Gritsevich, D. Britt, J. Borovička, P. Spurný, A. Igaz, J. Svoreň, L. Kornoš, P. Vereš, J. Koza, P. Zigo, S. Gajdoš, J. Világi, D. Čapek, Z. Krišandová, D. Tomko, J. Šilha, E. Schunová, M. Bodnárová, D. Búzová, and T. Krejčová (2014a), Density, porosity and magnetic susceptibility of the Košice meteorite shower and homogeneity of its parent meteoroid, Planet. Space Sci. 93-94, 96-100, DOI: 10.1016/ j.pss.2014.02.003.
  • Kohout, T., M. Gritsevich, V.I. Grokhovsky, G.A. Yakovlev, J. Haloda, P. Halodova, R.M. Michallik, A, Penttilä, and K. Muinonen (2014b), Mineralogy, reflectance spectra, and physical properties of the Chelyabinsk LL5 chondrite – Insight into shock-induced changes in asteroid regoliths, Icarus 228, 78-85, DOI: 10.1016/j.icarus.2013.09.027.
  • Krzesińska, A. (2011), High resolution X-ray tomography as a tool for analysis of internal textures in meteorites, Meteorites 1, 1, 3-12.
  • Lee, M.R., and P.A. Bland (2004), Mechanisms of weathering of meteorites recovered from hot and cold deserts and the formation of phyllosilicates, Geochim. Cosmochim. Ac. 68, 4, 893-916, DOI: 10.1016/S0016-7037(03) 00486-1.
  • Mathew, K.J., and F. Begemann (1995), Isotopic composition of xenon and krypton in silicate-graphite inclusions of the El Taco, Campo Del Cielo, IAB iron meteorite, Geochim. Cosmochim. Ac. 59, 22, 4729-4746, DOI: 10.1016/ 0016-7037(95)00332-0.
  • McKay, D.S., D.D. Bogard, R.V. Morris, R.L. Korotev, P. Johnson, and S.J. Wentworth (1986), Apollo 16 regolith breccias: Characterization and evidence for early formation in the mega-regolith, Proc. Lunar Planet. Sci. Conf. 16th, Part 2, J. Geophys. Res. 91, B4, D277-D303, DOI: 10.1029/ JB091iB04p0D277.
  • McKay, D.S., D.D. Bogard, R.V. Morris, R.L. Korotev, S.J. Wentworth, and P. Johnson (1989), Apollo 15 regolith breccias: Window to a KREEP regolith. In: Proc. Lunar Planet. Sci. Conf. 19th, 19-41.
  • Meteoritical Bulletin (1970), New falls and discoveries, Meteoretics 5, 2, 85-109.
  • Meteoritical Bulletin (2013), The Meteoretical Society, Lunar and Planetary Institute, available from: http://www.lpi.usra.edu/meteor/metbull.php?code= 16852.
  • Metzler, K., U. Ott, K. Welten, M.W. Caffee, and L. Franke (2008), The L3-6 Regolith Breccia Northwest Africa 869: Petrology, noble gases, and cosmogenic radionuclides, Lunar Planet. Sci. 1391, 1120.
  • Müller, O. (1977), Chemical studies of the Mundrabilla iron meteorite by Neutronactivation, J. Radioanal. Nucl. Ch. 38, 1-2, 499-511, DOI: 10.1007/ BF02520224.
  • Pesonen, L.J., K. Kuoppamäki, J. Timonen, J. Hartikainen, M Terho, and K. Hartikainen (1997), On the porosity of L and H chondrites. In: 28th Lunar and Planetary Science Conference, Abstract 1684.
  • Rubin, A.E. (1997), Mineralogy of meteorite groups, Meteorit. Planet. Sci. 32, 231- 247, DOI: 10.1111/j.1945-5100.1997.tb01262.x.
  • Signer, P., and H.E. Suess (1963), Rare gases in the sun, in the atmosphere, and in meteorites. In: J. Geiss and E.D. Goldberg (eds.), Earth Science and Meteorites, North-Holland, Amsterdam, 241-272.
  • Stelzner, T., K. Heide, A. Bischoff, D. Weber, P. Scherer, L. Schultz, M. Happel, W. Schron, U. Neupert, R. Michel, R.N. Clayton, T.K. Mayeda, G. Bonani, I. Haidas, S. Ivy-Ochs, and M. Suter (1999), An interdisciplinary study of weathering effects in ordinary chondrites from the Açfer region, Algeria, Meteorit. Planet. Sci. 34, 5, 787-794, DOI: 10.1111/j.1945-5100.1999. tb01391.x.
  • Strait, M.M., and G.J. Consolmagno (2004), Micro crack porosity in meteorites: Clues to early history? Eos 85, 33A.
  • Talwani, M., G. Thompson, B. Dent, H. Kahle, and S. Buck (1973), Traverse gravimeter experiment in Apollo 17, Preliminary Science Report, Spec. Publ., NASA SP-330, 13.1-13.13.
  • Teiser, J., and G. Wurm (2009), High-velocity dust collisions: Forming planetesimals in a fragmentation cascade with final accretion, Mon. Not. Roy. Astron. Soc. 393, 4, 1584-1594, DOI: 10.1111/j.1365-2966.2008.14289.x.
  • Tikoo, S.M., J. Gattacceca, B.P. Weiss, and C.R. Suavet (2013), Thermal demagnetization of shock remanent magnetization in extraterrestrial materials. In: Lunar and Planetary Science Conf., 2354, 2 pp.
  • Verma, H.C., and R.P. Tripathi (2004), Anomalous Mössbauer parameters in the second generation regolith Ghubara meteorite, Meteorit. Planet. Sci. 39, 10, 1755-1759.
  • Vinogradov, A.P., and G.P. Vdovykin (1963), Diamonds in stony meteorites, Geochemistry 8, 743-750.
  • Warren, P.H. (2001), Porosities of lunar meteorites: Strength, porosity, and petrologic screening during the meteorite delivery process, J. Geophys. Res. 106, E5, 10101-10111, DOI: 10.1029/2000JE001283.
  • Wasson, J.T. (1974), Meteorites, Springler Verlag, London. Wasson, J.T., and G.W. Kallemeyn (2002), The IAB iron-meteorite complex: A group, five subgroups, numerous grouplets, closely related, mainly formed by crystal segregation in rapidly cooling melts, Geochim. Cosmochim. Ac. 66, 13, 2445-2473, DOI: 10.1016/S0016-7037(02)00848-7.
  • Wasson, J.T., and J.W. Richardson (2001), Fractionation trends among IVA iron meteorites: contrasts with IIIAB trends, Geochim. Cosmochim. Ac. 65, 6, 951-970, DOI: 10.1016/S0016-7037(00)00597-4.
  • Weinke, H.H. (1977), Chemical and mineralogical investigation of a Mundrabilla specimen, Meteoret. Soc. 12, 384-386.
  • Weisberg, M.K., T.J. McCoy, and A.N. Krot (2006), systematics and evaluation of meteorite classification. In: D.S. Binze, H.Y. Lauretta, and McSween, Jr. (eds.), Meteorites and the Early Solar System II, University of Arizona Press, 19-52.
  • Welten, K.C. (1999), Concentrations of siderophile elements in nonmagnetic fractions of Antarctic H and L chondrites: A quantitative approach on weathering effects, Metorit. Planet. Sci. 34, 2, 259-270.
  • Wieler, R., H. Busemann, and I.A. Franchi (2006), Trapping and modification processes of Noble gases and nitrogen in meteorites and their parent bodies. In: D.S. Lauretta and H.Y. McSween (eds.), Meteorites and the Early Solar System II, University of Arizona Press, 499-521.
  • Wilkison, S.L., and M.S. Robinson (2000), Bulk density of ordinary chondrite meteorites and implications f or asteroidal internal structure, Meteorit. Planet. Sci. 35, 6, 1203-1213.
  • Yeomans, D.K., P.G. Antreasian, A. Cheng, D.W. Dunham, R.W. Farquhar, R.W. Gaskell, J.D. Giorgini, C.E. Helfrich, A.S. Konopliv, J.V. McAdams, J.K. Miller, Jr. W.M. Owen, P.C. Thomas, J. Veverka, and B.G. Williams (1999), Estimating the mass of asteroid 433 Eros during the NEAR spacecraft flyby, Science 285, 5427, 560-561, DOI: 10.1126/science.285. 5427.560.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59f83605-efd3-4223-bbf8-f9e59c2d139a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.