Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Badania eksperymentalne wpływu struktury rur CFRP na ilość pochłanianej energii w warunkach dynamicznych
Języki publikacji
Abstrakty
The aim of this work is to examine the effect of the layer configuration (lay-up) of carbon 3k/IMP503Z40 epoxy composite elements on the specific energy absorption (SEA) effect in the process of progressive crushing of composite tubes. Composite tubes made of Impregnatex Compositi prepreg with a dry areal weight of 160 g/m2 plain weave and unidirectional prepreg (UD) 200 g/m2 on an epoxy matrix were tested. The resin content in both prepregs was 47%. Using these two materials, tubes with different ratios of axial and hoop fibers, in two sizes with an inner diameter of 42 and 20 mm while maintaining a constant ratio of wall thickness to a diameter of 0.05 were made. The samples were unilaterally chamfered at the angle of 70°. Then, tests of progressive crushing of the samples under dynamic conditions by means of a drop tower and an additional initiator were performed. A new factor was introduced to describe the mass fraction of the axial fibers. SEA was calculated, which indicated that the higher the share of axial fibers, the greater the SEA for both types of samples and it was indicated that there may be a scale effect.
Celem niniejszej pracy jest zbadanie wpływu konfiguracji warstw elementów kompozytowych włókno węglowe 3k/żywica epoksydowa IMP503Z40 na efekt pochłaniania energii (SEA) w procesie progresywnego niszczenia rur kompozytowych. Badano rury kompozytowe wykonane z preimpregnatu firmy Impregnatex Compositi o gramaturze suchej tkaniny 160 g/m2 o splocie płóciennym oraz preimpregnatu jednokierunkowego (UD) 200 g/m2 na osnowie epoksydowej. Zawartość żywicy w obu preimpregnatach wynosiła 47%. Wykorzystując te dwa materiały, wykonano rury o różnym stosunku ilości włókien osiowych do obwodowych, w dwóch rozmiarach o średnicy wewnętrznej 42 mm oraz o średnicy wewnętrznej 20 mm, zachowując stały stosunek grubości ścianki do średnicy wynoszący 0,05. Próbki jednostronnie fazowano pod kątem 70°. Następnie wykonano testy progresywnego niszczenia próbek w warunkach dynamicznych z zastosowaniem młota opadowego oraz dodatkowego elementu - inicjatora. Wprowadzono nowy współczynnik do opisu udziału masowego włókien osiowych. Obliczono wartości zaabsorbowanej energii (SEA), które wskazują, że im większy udział włókien osiowych, tym większa ilość zaabsorbowanej energii dla obu typów próbek, oraz wskazano na prawdopodobne występowanie efektu skali.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
196--201
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
- Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszow, Poland
autor
- Military University of Technology, ul. gen. Witolda Urbanowicza 2, 00-908 Warsaw, Poland
Bibliografia
- [1] Yan L., Chouwa N., Jayaraman K., On energy absorption capacity, flexural and dynamic properties of flax/epoxy composite tubes, Fibers and Polymers 2014, 15, 1270-1277.
- [2] Alkbir M.F.M., Sapuan S.M., Nuraini A.A., Ishak M.R., Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review, Composite Structures 2016, 148, 59-73.
- [3] Hull D., A unified approach to progressive crushing of fibre-reinforced composite tubes, Compos. Sci. Technol. 1991, 40, 377-421.
- [4] Farley G.L., Jones R.M., Crushing characteristic of continuous fiber-reinforced composite tubes, J. Compos. Mater. 1992, 26, 37-50.
- [5] Thornton P.H., Edward J., Energy absorption in composite tubes, Journal of Composite Materials 1982, 16, 521-545.
- [6] Farley G.L., Energy absorption of composite materials, Journal of Composite Materials 1983, 17, 267-279.
- [7] Schmueser D.W., Wickliffe L.E., Impact energy absorption of continuous fiber composite tubes, J. Eng. Mat. Trans. ASME 1987, 72, 72-77.
- [8] Ramakrishna S., Hamada H., Maekawa Z., Energy absorption behavior of carbon fiber reinforced thermoplastic composite tubes, Journal of Thermoplastic Composite Materials 1995, 14, 1121-1141.
- [9] Mamalis A., Manolakos D., Ioannidis M., Papapostolou D., On the experimental investigation of crash energy absorption in laminate splaying collapse mode of FRP tubular components. Compos. Struct. 2005, 70, 413-29.
- [10] Alkoles O.M.S., Mahdi E., Hamouda A.M.S., Sahari B.B., Ellipticity ratio effects in the energy absorption of axially crushed composite tubes, Applied Composite Materials 2003, 10, 339-363.
- [11] Czaplicki M., Robertson R., Thornton P., Comparison of bevel and tulip triggered pultruded tubes for energy absorption, Composites Science and Technology 1991, 40, 31-46.
- [12] Farley G.L., Effect of specimen geometry on the energy absorption capability of composite materials, Journal of Composite Materials 1986, 20, 390-400.
- [13] Gupta N., Velmurugan R., Gupta S., An analysis of axial crushing of composite tubes, Journal of Composite Materials 1997, 31, 1262-86.
- [14] David M., Johnson A., Voggenreiter H., Analysis of crushing response of composite crashworthy structures, Applied Composite Materials 2013, 20, 773-787.
- [15] Thornton P., The crush behavior of pultruded tubes at high strain rates, Journal of Composite Materials 1990, 24, 594-615.
- [16] Mamalis A., Manolakos D., Demosthenous G., Ioannidis M., Analysis of failure mechanisms observed in axial collapse of thin-walled circular fiberglass composite tubes, ThinWalled Structures 1996, 24, 335-352.
- [17] Mamalis A.G., Robinson M., Manolakos D.E., Demosthenous G.A., Ioannidis M., Carruthers J., Crashworthy capability of composite material structures, Composite Structures 1997, 37, 109-134.
- [18] Pickett L., Dayal V., Effect of tube geometry and ply-angle on energy absorption of a circular glass/epoxy crush tube - a numerical study, Compos. Part B: Eng. 2012, 43, 2960-2967.
- [19] Thornton, P.H., Energy absorption in composite structures, J. Comp. Mats 1979, 13, 247-262.
- [20] Song H., Zhao X., Energy absorption behavior of doublechamfer triggered glass/epoxy circular tubes, Journal of Composite Materials 2002, 36, 2183-2201.
- [21] Joosten M.W., Dutton S., Kelly D., Thomson R., Experimental evaluation of the crush energy absorption of triggered composite sandwich panels under quasi-static edgewise compressive loading, Composites Part A 2010, 41, 1099-1106.
- [22] Yan L., Chouwa N., Jayaraman K., Effect of triggering and polyurethane foam-filler on axial crushing of natural flax/epoxy composite tubes, Materials & Design 2014, 56, 528-541.
- [23] Mamalis A.G., Manolakos D.E., Ioannidis M.B., Papapostolou D.P,. The static and dynamic axial collapse of CFRP square composite tubes: finite element modelling, Composite Structures 2006, 74, 213-25.
- [24] Jiménez M.A., Miravete A, Larrodé E., Revuelta D., Effect of trigger geometry on energy absorption in composite profiles, Composite Structures 2000, 48, 107-111.
- [25] Hou T., Pearce G.M.K., Prusty B.G., Kelly D.W., Thomson R.S., Pressurized composite tubes as variable load energy absorbers, Composite Structures 2015, 120, 346-357.
- [26] Siromani D., Henderson G., Mikita D., Mirarchi K., Park R., Smolko J., Awerbuch J., Tan Tein-Min, An experimental study on the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial compression, Composites: Part A 2014, 64, 25-35.
- [27] Atthapreyangkul A., Gangadhara Prusty B., Experimental and numerical analysis on the geometrical parameters towards the maximum SEA of CFRP components, Composite Structures 2017, 164, 229-236.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59f36a05-e5fa-4281-b87a-1bde77b14edf