Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper provides an analysis of the impact of the values of cutting tool inclination strategies and angles measured in the parallel and perpendicular to feed direction, radial depth of cut and feedrate on the surface roughness. The workpiece was made of the AISI H13 steel, hardness 50 HRC, and was machined using a ball-nosed end mill with CBN edges. The research methodology involved experiments conducted based on the Taguchi orthogonal array, optimization of parameters with the use of Taguchi method and process modelling using neural networks. Thanks to the use of neural networks, the analyses were performed for various levels of machining efficiency, obtained as a result of different radial depths of cut and feedrates. In order to obtain mathematical models well-describing strongly nonlinear impact of the cutting tool inclination strategies and angles, a separate neural network learned for each tool inclination strategy. The prediction of results was made using a set of neural networks. The analyses and experiments resulted in surfaces with very low Ra parameter of 0.16 μm and mathematical models with a good fit to the experimental data. Values of the cutting tool inclination angle that allow obtaining the surface of specific surface roughness were specified for various levels of machining performance.
Wydawca
Rocznik
Tom
Strony
184--194
Opis fizyczny
Bibliogr. 29 poz., fig., tab.
Twórcy
autor
- Chair of Production Engineering, Mechanical Faculty, Cracow University of Technology
Bibliografia
- 1. Devries R.C. Cubic Boron Nitride: Handbook of Properties. GE, 1972.
- 2. Du Y., Liang Z., Ma Y., et al. Development of PCBN micro ball-end mill with multi-edge and spherical flank face. J Manuf Process 2022; 84: 424–434.
- 3. Vila C., Siller H.R., Rodriguez C.A., et al. Economical and technological study of surface grinding versus face milling in hardened AISI D3 steel machining operations. Int J Prod Econ 2012; 138: 273–283.
- 4. Soshi M., Fonda P., Kashihara M., et al. A study on cubic boron nitride (CBN) milling of hardened cast iron for productive and quality manufacturing of machine tool structural components. Int J Adv Manuf Technol 2013; 65: 1485–1491.
- 5. Waszczuk K., Karolczak P., Wisniewska M., et al. Influence of the path type on selected technological effects in the trochoidal milling. Adv Sci Technol Res J 2017; 11: 147–153.
- 6. Wang D., Yin L., Hänel A., et al. Cutting performance of binderless nano-polycrystalline cBN and PcBN milling tools for high-speed milling of hardened steel. Ceram Int 2023; 49: 34757–34773.
- 7. Saketi S., Sveen S,. Gunnarsson S., et al. Wear of a high cBN content PCBN cutting tool during hard milling of powder metallurgy cold work tool steels. Wear 2015; 332–333: 752–761.
- 8. Jin M., Goto I., Watanabe T., et al. Development of cBN ball-nosed end mill with newly designed cutting edge. J Mater Process Technol 2007; 192–193: 48–54.
- 9. Sato M., Ueda T., Tanaka H. An experimental technique for the measurement of temperature on CBN tool face in end milling. Int J Mach Tools Manuf 2007; 47: 2071–2076.
- 10. Okada M., Hosokawa A., Tanaka R., et al. Cutting performance of PVD-coated carbide and CBN tools in hardmilling. Int J Mach Tools Manuf 2011; 51: 127–132.
- 11. Bilek O., Samek D., Suba O. Investigation of surface roughness while ball milling process. Key Eng Mater 2014; 581: 335–340.
- 12. Beňo J., Maňková I., Ižol P., et al. An approach to the evaluation of multivariate data during ball end milling free-form surface fragments. Measurement 2016; 84: 7–20.
- 13. Zhou J., Ren J., Yao C. Multi-objective optimization of multi-axis ball-end milling Inconel 718 via grey relational analysis coupled with RBF neural network and PSO algorithm. Measurement 2017; 102: 271–285.
- 14. Bilek O., Milde R., Strnad J., et al. Prediction and modeling of roughness in ball end milling with tool-surface inclination. IOP Conf Ser Mater Sci Eng 2020; 726: 012003.
- 15. Yao C., Tan L., Yang .P, et al. Effects of tool orientation and surface curvature on surface integrity in ball end milling of TC17. Int J Adv Manuf Technol 2018; 94: 1699–1710.
- 16. de Souza A.F., Berkenbrock .E, Diniz A.E., et al. Influences of the tool path strategy on the machining force when milling free form geometries with a ball-end cutting tool. J Braz Soc Mech Sci Eng 2015; 37: 675–687.
- 17. Matras A., Zębala W. Optimization of Cutting Data and Tool Inclination Angles During Hard Milling with CBN Tools, Based on Force Predictions and Surface Roughness Measurements. Materials 2020; 13: 1109.
- 18. Srinivas M.S., Sangeeth P., Venkaiah N., et al. State of the art on tool wear characterization in micromilling. Mater Today Proc 2023.
- 19. Kulisz M., Zagórski I., Józwik J. 2D Geometric Surface Structure ANN Modeling after Milling of the AZ91D Magnesium Alloy. Adv Sci Technol Res J 2022; 16: 131–140.
- 20. Rifai A.P., Aoyama H., Tho N.H., et al. Evaluation of turned and milled surfaces roughness using convolutional neural network. Measurement 2020; 161: 107860.
- 21. Mongan P.G., Hinchy E.P., O’Dowd N.P., et al. An ensemble neural network for optimising a CNC milling process. J Manuf Syst 2023; 71: 377–389.
- 22. Bilek O., Samek D.. Neural networks in modeling of CNC milling of moderate slope surfaces. Adv Intell Syst Comput 2014; 285: 75–83.
- 23. Gupta A., Shah R., Dave H., et al. Multi-objective optimization of surface parameters such as concavity, straightness and roughness in milling process. Mater Today Proc 2018; 5: 5296–5302.
- 24. Vishnu Vardhan M., Sankaraiah G., Yohan M., et al. Optimization of Parameters in CNC milling of P20 steel using Response Surface methodology and Taguchi Method. Mater Today Proc 2017; 4: 9163–9169.
- 25. Masmiati N., Sarhan A.A.D. Optimizing cutting parameters in inclined end milling for minimum surface residual stress – Taguchi approach. Measurement 2015; 60: 267–275.
- 26. Bouzakis K.-D., Aichouh P., Efstathiou K. Determination of the chip geometry, cutting force and roughness in free form surfaces finishing milling, with ball end tools. Int J Mach Tools Manuf 2003; 43: 499–514.
- 27. Haykin S. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1998..
- 28. Machno M., Matras A., Szkoda M. Modelling and Analysis of the Effect of EDM-Drilling Parameters on the Machining Performance of Inconel 718 Using the RSM and ANNs Methods. Materials 2022; 15: 1152.
- 29. Vrabeľ M., Mankova I., Beno J., et al. Surface Roughness Prediction using Artificial Neural Networks when Drilling Udimet 720. Procedia Eng 2012; 48: 693–700.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59f345b0-bd8c-4e8d-9b8b-98cc1337f506