PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fertilizers and Pesticides Impact on Surface-Active Substances Accumulation in the Dark Gray Podzolic Soils

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article reports on a study that examined the impact of agrochemicals on the levels of surfactants in soil. Specifically, the study found that the use of mineral fertilizers and pesticides led to an increase in the levels of anionic surfactants (ASA) in the soil. Furthermore, the simultaneous application of fertilizers and pesticides had a greater effect on ASA levels than either factor alone. The use of pesticides also led to an increase in non-ionic surfactants (NSA), while the use of fertilizers resulted in a decrease in NSA levels. The study also found that the increase in the levels of mobile forms of key nutrients in the soil was associated with the accumulation of ASA in lower layers of the soil profile.The amount of alkaline hydrolyzed nitrogen under the low protection system increased by 3.0–23.2 mg kg-1 soil, mobile phosphorus by 14.0–144.0 mg P2O5, and exchangeable potassium by 9.0–222.0 mg K2O per kg soil, compared to the control. With the complex use of fertilizers and pesticides in one block, a trend of increasing mobile forms of nutrients in the soil was observed. The distribution of ASA amount in the soil profile is descending. The clear presence of ASA was established only in the soil layer of 0–40 cm. An increase of ASA content in the soil due to the use of agrochemicals and fertilizers is observed up to a depth of 60–80 cm. Using biological elements in agriculture significantly reduces the amount of these substances in the soil profile.
Rocznik
Strony
119--127
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony Str., 15, UA03041, Kyiv, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony Str., 15, UA03041, Kyiv, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony Str., 15, UA03041, Kyiv, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony Str., 15, UA03041, Kyiv, Ukraine
  • Uzhhorod National University, Voloshyna Str. 32, UA88000, Uzhhorod, Ukraine
  • Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Martim de Freitas Str., 3000-456 Coimbra, Portugal
  • NSC «Institute of Agriculture NAAS», 2-B Mashynobudivnykiv Str., UA08162 Chabany, Kyiv region, Ukraine
autor
  • National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony Str., 15, UA03041, Kyiv, Ukraine
Bibliografia
  • 1. Ananyeva N.D., Blagodatskaya E.V., Orlinsky D.B., Myakshina T.N. 1993. Estimation of self-cleaning ability of soils from pesticides. Soil Science, 12, 11–15. (in Russian)
  • 2. Badmus S.O., Amusa H.K., Oyehan T.A., Saleh T.A. 2021. Environmental risks and toxicity of surfactants: overview of analysis, assessment, and remediation techniques. Environmental Science and Pollution Research, 28(44), 62085–62104. https://doi.org/10.1007/s11356-021-16483-w
  • 3. Bansal O.P. 2011. Fate of pesticides in the environment. Journal of the Indian Chemical Society, 88(10), 1525.
  • 4. Bliev Yu.K. Melnikova N.I. 1986. Influence of glyphosate on the fertility of soddy-podzolic soils and the composition of humus. Agrochemistry, 8, 96–106. (in Russian)
  • 5. Borneff Z. 1974. Die Verunreinigung von grund und obesflachenwasser dureh organislu hibstansen des huttearosols. Informations.Foderat. Eur. Gewassersclutz, 21, 44–45.
  • 6. Butenko A., Litvinov D., Borys N., Litvinova O., Masyk I., Onychko, V., Kharchenko S. 2020. A The Typicality of Hydrothermal Conditions of the Forest Steppe and Their Influence on the Productivity of Crops. Environmental Research, Engineering and Management, 76(3), 84–95. https://doi.org/10.5755/j01.erem.76.3.25365
  • 7. Chiaia-Hernandez A.C., Keller A., Wächter D., Steinlin C., Camenzuli L., Hollender J., Krauss M. 2017. Long-term persistence of pesticides and TPs in archived agricultural soil samples and comparison with pesticide application. Environmental Science & Technology, 51(18), 10642–10651. https://doi.org/10.1021/acs.est.7b02529
  • 8. Deshmuk V.A. Shrikhande J.S. 1977. Effect of high doses of some herbicides on soil microflora and two microbial processes in the soil., Ind. J. Microbiol, 17(2), 69–72. URL: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PAS-CAL7850256781
  • 9. DSTU 4115-2002. 2003. Soils. Determination of mobile compounds of phosphorus and potassium by the modified Chirikov method. [Effective from 2003-01-01]. Kyiv, State Committee of Ukraine for Technological Regulation and Consumer Policy, 9. (in Ukraine)
  • 10. DSTU 4289:2004. 2005. Soil quality. Methods for determining organic matter. [Effective from 2005-07-01]. Kiev, State Consumer Standard of Ukraine, 14. (in Ukraine)
  • 11. DSTU 7863:2015. 2016. Soil quality. Determination of easily hydrolyzable nitrogen by the Kornfield method. [Effective from 2016-07-01]. Kyiv, State Enterprise “UkrNDNC”. 5 p. (in Ukraine)
  • 12. DSTU 7907:2015. 2016. Soil quality. Determination of mobile compounds of potassium by the Maslova method in the modification of the NSC IGA named after O. N. Sokolovsky. 9 p. (in Ukraine)
  • 13. Eliseev S.A., Kucher R.V. 1991. Surfactants and biotechnology. Science thought. 113–114. (in Russian)
  • 14. Farias C.B., Almeida F.C., Silva I.A., Souza T.C., Meira H.M., Rita de Cássia F., Sarubbo L.A. 2021. Production of green surfactants: Market prospects. Electronic Journal of Biotechnology, 51, 28–39. https://doi.org/10.1016/j.ejbt.2021.02.002
  • 15. Hanislamova G.M., Kabirov R.R., Hazipova R.H. 1988. Surfactants in terrestrial ecosystems, 143. (in Russian)
  • 16. Havryliuk О., Kondratenko Т., Mazur B., Kutovenko V., Mazurenko B., Voitsekhivska O., Dmytrenko Y. 2022a. Morphophysiological peculiarities of productivity formation in columnar apple varieties. Agronomy research, 20(1), 148–160. https://doi.org/10.15159/AR.22.007
  • 17. Havryliuk О., Kondratenko Т., Mazur B., Tonkha О., Andrusyk Y., Kutovenko V., Yakovlev R., Kryvoshapka V., Trokhymchuk A., Dmytrenko Y. 2022b. Efficiency of productivity potential realization of different-age sites of a trunk of grades of columnar type apple-trees. Agronomy research, 20(2), 241–260. https://doi.org/10.15159/AR.22.031
  • 18. Hrabovska O.S., Hrabovskyi S.S., Kaplinskyi V.V. 2011.The influence of surface-active substances on the living organism. Lviv Polytechnic, 5, 43–52. (in Ukraine)
  • 19. Ivanova I., Serdyuk M., Malkina V., Tonkha O., Tsyz O., Mazur B., Shkinder-Barmina A., Gerasko T., Havryliuk O. 2022. Cultivar features of polyphenolic compounds and ascorbic acid accumulation in the cherry fruits (Prunus cerasus L.) in the Southern Steppe of Ukraine. Agronomy research, 20(3). https://doi.org/10.15159/AR.22.065
  • 20. Jimoh A.A., Johnson L. 2019. Biosurfactant: A new frontier for greener technology and environmental sustainability. Ecotoxicology and Environmental safety, 184, 109607. https://doi.org/10.1016/j.ecoenv.2019.109607
  • 21. Kruglov Yu.V., Gersh N.B., Shtalberg M.V. 1980. The effect of glyphosate on soil microflora. Chemistry in agriculture, 10, 4–44. (in Russian)
  • 22. Kuyan V.G. 1977. Influence of herbicides on the nutritional regime and microbiological activity of the soil during its preparation for strawberries, Agrochemistry, 2, 19–22. (in Russian)
  • 23. Litvinova O., Degodyuk S., Litvinov D.,, Symochko L., Zhukova Y., Kyrylchuk A. 2021. The impact of agrochemical loading on nutritive regime of grey forest soil during field crop rotation. International Journal of Ecosystems and Ecology Science (IJEES), 11(4), 831–836. https://doi.org/10.31407/IJEES11.421
  • 24. Litvinova O., Litvinov D., Degodyuk S., Romanova S., Rasevich V. 2020. Effect of fertilizers systems on accumulation of heavy metals in gray forest soil. International Journal of Ecosystems and Ecology Science (IJEES), 10(4), 603–608. https://doi.org/10.31407/ijees10.404
  • 25. Masiá A., Vásquez K., Campo J., Picó Y. 2015. Assessment of two extraction methods to determine pesticides in soils, sediments and sludges. Application to the Túria River Basin. Journal of Chromatography A, 1378, 19–31. https://doi.org/10.1016/j.chroma.2014.11.079
  • 26. Orton T.G., Saby N.P A., Arrouays D., Jolivet C.C., Villanneau E.J., Marchant B.P., Briand O. 2013. Spatial distribution of Lindane concentration in topsoil across France. Science of the total environment, 443, 338–350. https://doi.org/10.1016/j.scitotenv.2012.10.103
  • 27. Palmer M., Hatley H. 2018. The role of surfactants in wastewater treatment: Impact, removal and future techniques: A critical review. Water research, 147, 60–72. https://doi.org/10.1016/j.watres.2018.09.039
  • 28. Pérez A.P., Eugenio N.R. 2018. European Commission, Joint Research Centre. Status of local soil contamination in Europe : revision of the indicator ‹Progress in the management contaminated sites in Europe›, Publications Office, 193. https://data.europa.eu/doi/10.2760/093804
  • 29. Pose-Juan E., Sánchez-Martín M.J., Andrades M.S., Rodríguez-Cruz M.S., Herrero-Hernández E. 2015. Pesticide residues in vineyard soils from Spain: spatial and temporal distributions. Science of the Total Environment, 514, 351–358. https://doi.org/10.1016/j.scitotenv.2015.01.076
  • 30. Prodanchuk M.G., Mudriy I.V. 2000. Surface-active substances in the agro-industrial complex: ecological and hygienic aspects. Science opinion, 127. (in Ukraine)
  • 31. Qu C., Albanese S., Chen W., Lima A., Doherty A.L., Piccolo A., De Vivo B. 2016. The status of organochlorine pesticide contamination in the soils of the Campanian Plain, southern Italy, and correlations with soil properties and cancer risk. Environmental Pollution, 216, 500–511. https://doi.org/10.1016/j.envpol.2016.05.089
  • 32. Rasheed T., Shafi S., Bilal M., Hussain T., Sher F., Rizwan K. 2020. Surfactants-based remediation as an effective approach for removal of environmental pollutants - A review. Journal of Molecular Liquids, 318, 113960. https://doi.org/10.1016/j.molliq.2020.113960
  • 33. Saleh T.A., Mustaqeem M., Khaled M. 2022. Water treatment technologies in removing heavy metal ions from wastewater: A review. Environmental Nanotechnology, Monitoring & Management, 17, 100617. https://doi.org/10.1016/j.enmm.2021.100617
  • 34. Sherry J. 1994. Effects of 2, 4‐dichlorophenoxyacetic acid on fungal propagules in freshwater ponds. Environmental Toxicology and Water Quality, 9(3), 209–221. https://doi.org/10.1002/tox.2530090308
  • 35. Silva V., Mol H.G., Zomer P., Tienstra M., Ritsema C.J., Geissen V. 2019. Pesticide residues in European agricultural soils–A hidden reality unfolded. Science of the Total Environment, 653, 1532–1545. https://doi.org/10.1016/j.scitotenv.2018.10.441
  • 36. Siyal A.A., Shamsuddin M.R., Low A., Rabat N.E. 2020. A review on recent developments in the adsorption of surfactants from wastewater. Journal of environmental management, 254, 109797. https://doi.org/10.1016/j.jenvman.2019.109797
  • 37. Symochko L. 2020. Soil microbiome: diversity, activity, functional and structural successions. International Journal of Ecosystems and Ecology Sciences (IJEES), 10(2), 277–284. https://doi.org/10.31407/ijees10.206
  • 38. Tanchyk S., Litvinov D., Butenko A., Litvinova O., Pavlov O., Babenko A., Onychko T. 2021. Fixed nitrogen in agriculture and its role in agrocenoses. Agronomy Research, 19(2), 601–611. https://doi.org/10.15159/ar.21.086
  • 39. Vasylenko O., Kondratenko T., Havryliuk O., Andrusyk Y., Kutovenko V., Dmytrenko Yu, Marchyshyna Y. 2021. The study of the productivity potential of grape varieties according to the indicators of functional activity of leaves. Potravinarstvo Slovak Journal of Food Sciences, 15, 639–647. https://doi.org/10.5219/1638
  • 40. Voloshchenko O.I. Mudryiy M.V. 1991. Hygienic value of surfactants. Health, 120. (in Russian)
  • 41. Zhao F.J., Ma Y., Zhu Y.G., Tang Z., McGrath S.P. 2015. Soil contamination in China: current status and mitigation strategies. Environmental science & technology, 49(2), 750–759. https://doi.org/10.1021/es5047099
  • 42. Zvyagintsev D.G., Dobrovolskaya T.G., Babeva I.P., Zenova G.M., Lyisak L.V., Marfenina O.E. 1992. The role of microorganisms in the biogeocenotic functions of soils. Soil Science, 6, 63–77. (in Russian)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59f2bef9-3fe1-4012-9ba7-deeb80d35788
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.