PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of Chaboche and Bouc-Wen parameters for quenched and tempered steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During cyclic loadings, metal alloys can undergo cyclic plasticity, for example, at notches. The Chaboche kinematic hardening model provides a versatile and realistic description of the material stress-strain behaviour under multiaxial cyclic loadings. In this work, the global properties, extracted from stabilized cycles of strain-controlled tests and from a forcecontrolled test, are employed to calculate the parameters. Alternatively, the Bouc-Wen model can provide a reliable representation of nonlinear hysteretic phenomena, and the classic nonlinear least squares approach is employed to tune its constants. The performances of the two proposed techniques are compared, and a final discussion is provided.
Rocznik
Strony
507--519
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • University of Pisa, Department of Civil and Industrial Engineering (DICI), Pisa, Italy
  • University of Pisa, Department of Civil and Industrial Engineering (DICI), Pisa, Italy
  • University of Pisa, Department of Civil and Industrial Engineering (DICI), Pisa, Italy
autor
  • University of Pisa, Department of Civil and Industrial Engineering (DICI), Pisa, Italy
Bibliografia
  • 1. Badnava H., Pezeshki S.M., Fallah Nejad K., Farhoudi H.R., 2012, Determination of combined hardening material parameters under strain controlled cyclic loading by using the genetic algorithm method, Journal of Mechanical Science and Technology, 26, 3067-3072.
  • 2. Bertini L., Le Bone L., Santus C., Chiesi F., Tognarelli L., 2017, High load ratio fatigue strength and mean stress evolution of quenched and tempered 42CrMo4 Steel, Journal of Materials Engineering and Performance, 26, 3784-3793.
  • 3. Bouc R., 1967, Forced vibrations of mechanical systems with hysteresis, Proceedings of the Fourth Conference on Nonlinear Oscillations, Prague, Czech Republic, 10, 142-149.
  • 4. Cai J., Dong W., Nagamune R., 2023, A survey of Bouc-Wen hysteretic models applied to piezo-actuated mechanical systems: Modeling, identification, and control, Journal of Intelligent Material Systems and Structures, 34, 16, 1843-1863.
  • 5. Chaboche J.L., 1986, Time-independent constitutive theories for cyclic plasticity. International Journal of Plasticity, 2, 149-188.
  • 6. Chaboche J.L., 1991, On some modifications of kinematic hardening to improve the description of ratchetting effects, International Journal of Plasticity, 7, 661-678.
  • 7. Chaparro B.M., Thuillier S., Menezes L.F., Manach P.Y., Fernandes J.V., 2008, Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms, Computational Materials Science, 44, 339-346.
  • 8. Charalampakis A.E., Dimou C.K., 2010, Identification of Bouc-Wen hysteretic systems using particle swarm optimization, Computers and Structures, 88, 21-22.
  • 9. Dafalias Y.F., Kourousis K.I., Saridis G.J., 2008, Multiplicative AF kinematic hardening in plasticity, International Journal of Solids and Structures, 45, 2861-2880.
  • 10. Dvoršek N., Stopeinig I., Klančnik S., 2023, Optimization of Chaboche material parameters with a genetic algorithm, Materials, 16, 1821.
  • 11. Hosseini R, Seifi R., 2020, Fatigue crack growth determination based on cyclic plastic zone and cyclic J-integral in kinematic–isotropic hardening materials with considering Chaboche model, Fatigue and Fracture of Engineering Materials and Structures, 43, 2668-2682.
  • 12. Karolczuk A, Skibicki D, Pejkowski Ł., 2019, Evaluation of the Fatemi-Socie damage parameter for the fatigue life calculation with application of the Chaboche plasticity model, Fatigue and Fracture of Engineering Materials and Structures, 42, 197-208.
  • 13. Koo G.-H., Lee J.-H., 2007, Investigation of ratcheting characteristics of modified 9Cr-1Mo steel by using the Chaboche constitutive model, International Journal of Pressure Vessels and Piping, 84, 284-292.
  • 14. Kreethi R., Mondal A.K., Dutta K., 2017, Ratcheting fatigue behaviour of 42CrMo4 steel under different heat treatment conditions, Materials Science and Engineering, 679, 66-74.
  • 15. Li J., Li Q., Jiang J., Dai J., 2018, Particle swarm optimization procedure in determining parameters in Chaboche kinematic hardening model to assess ratcheting under uniaxial and biaxial loading cycles, Fatigue and Fracture of Engineering Materials and Structures, 41, 1637-1645.
  • 16. Mahmoudi A.H., Badnava H., Pezeshki-Najafabadi S.M., 2011, An application of Chaboche model to predict uniaxial and multiaxial ratcheting, Procedia Engineering, 10, 1924-1929.
  • 17. Neri P., Holzbauer J., 2023, Experimental characterization and numerical modeling of wire rope isolators, Proceedings of the Nodycon: Third International Nonlinear Dynamics Conference, Rome, Italy.
  • 18. Ni Y.Q., Ko J.M., Wong C.W., 1998, Identification of non-linear hysteretic isolators from periodic vibration tests, Journal of Sound and Vibration, 217, 737-756.
  • 19. Ortiz G.A., Alvarez D.A., Bedoya-Ruíz D., 2013, Identification of Bouc-Wen type models using multi-objective optimization algorithms, Computers and Structures, 114-115, 121-132.
  • 20. Santus C., Romanelli L., Grossi T., Neri P., Romoli L., et al., 2022, Torsional-loaded notched specimen fatigue strength prediction based on mode I and mode III critical distances and fracture surface investigations with a 3D optical profilometer, International Journal of Fatigue, 161, 106913.
  • 21. Santus C., Grossi T., Romanelli L., Pedranz M., Benedetti M., 2023a, A computationally fast and accurate procedure for the identification of the Chaboche isotropic-kinematic hardening model parameters based on strain-controlled cycles and asymptotic ratcheting rate, International Journal of Plasticity, 160, 103503.
  • 22. Santus C., Romanelli L., Grossi T., Bertini L., Le Bone L., et al., 2023b, Elastic-plastic analysis of high load ratio fatigue tests on a shot-peened quenched and tempered steel, combining the Chaboche model and the Theory of Critical Distances, International Journal of Fatigue, 174, 107713.
  • 23. Shafiqul B., Tasnim H., 2000, Anatomy of coupled constitutive models for ratcheting simulation, International Journal of Plasticity, 16, 381-409.
  • 24. Wen Y.K., 1976, Method for random vibration of hysteretic systems, Journal of the Engineering Mechanics Division, ASCE, 102, 249-263.
  • 25. Zhang B., Wang R., Hu D., Jiang K., Hao X., et al., 2020, Constitutive modelling of ratcheting behaviour for nickel-based single crystal superalloy under thermomechanical fatigue loading considering microstructure evolution, International Journal of Fatigue, 139, 105786.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59f0ce69-3ff8-4505-b242-adcef130e9dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.