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NThe built environment is considered to be 
responsible for at least 20-40% of gre-
enhouse gases emission. As architects 

and engineers, we can strive to overcome this 
issue in our everyday practice. The way we 
design buildings can greatly influence our so-
ciety’s carbon emissions – by means of mini-
mizing the carbon footprint of a building over 
its entire lifecycle. But where should the em-
phasis be placed? Performing Life Cycle As-
sessment may help designers observe the 
factors that  cause the highest levels of emis-
sion in a project. Thus, such an assessment 
may also facilitate decision-making when 
choosing between different alternatives. Ma-
chine Learning is an emerging trend in many 
fields of science. It can accurately predict out-
comes of processes, actions or detect and 
measure trends. What are the possibilities to 
incorporate ML into Integrated Design 
Process?

Machine Learning in 
Architectural Design
Machine Learning is beginning to revo-

lutionize various fields of science. This fact 
may be noticed in areas, such as finance or 
medicine, yet its application in architectural 
design is limited [1]. The unique factor rela-
ted to ML approach to designing lies in the 
fact that the algorithms are not programmed 
for specific tasks. The algorithms create ma-
thematical models with the use of input da-
ta (known as Training Set), and apply the 
models to learn the ways so as to correctly 
predict the outcome. Three main branches 
of Machine Learning may be listed [2]. Fir-
stly, supervised learning is related to the al-
gorithm trained on the already labelled da-
ta, which means that the algorithm imme-
diately knows if the prediction is correct or 
wrong. Secondly, the unsupervised learning 
is applied in order to find patterns in data, 
and such algorithms are often used in image 
analysis and generation. Finally, the reinfor-
cement learning is based on a different ap-
proach - the algorithm is training itself con-
tinuously by receiving feedback on its accu-
racy. Currently, the main applications of Ma-

Machine Learning-Aided Architectural  
Design for Carbon Footprint Reduction

chine Learning in architectural design inc-
lude: those related to functional plan gene-
ration [3] or design space exploration [4] 
among many other uses [5]. Environmental 
assessment with the use of the ML appro-
ach was first presented by Theodore Gala-
nos [6], while a suggestion that ML can help 
reduce carbon footprint was made by D’Ami-
co et al. [7]. 

Integrated Design Process  
and Simplified Life Cycle 
Assessment (LCA)
Integrated Design Process is one of the de-

sign methods that can help minimize the im-
pact of architectural design on the environ-
ment [8] by incorporating various analyses in-
to the iterative design process, which covers 
entire life cycle of the building. Carbon foot-
print estimation (typically conducted with ap-
plication of Life Cycle Assessment [9]) may 
be provided as one example of such analy-
ses that may lead to creation of more envi-
ronmentally-friendly buildings. In early design 
phases, a simplified version of LCA can be 
applied in order to assess the impacts of the 
building sooner [10]. 

Parametric Approach and 
Optimization in Integrated 
Design Process
The utility of Integrated Design Process is 

based on fact that it offers an ability to test 
particular design variants, by analysing them 
and then assessing the applicability of each 
variant. With parametric approach, however,  
a building model is created not based of exact 
values, but rather on the basis of specific rela-
tionships between building components. For 
example, such as the width, length and heigh-
ted a building is defined by parameters that 
can easily be modified. The parametric design 
approach requires more  planning at the initial 
phase of the design process, as all the rela-
tionships between individual elements  are de-
fined by these parameters, but at the same ti-
me the approach allows for much greater flexi-
bility when it comes to changing the parameter 
values. The outcome of such modifications is 
almost instantly noticeable. It also offers a po-
ssibility for easy automation of the process of 
creating particular variants. A great benefit of 
using parametric model may be sought in the 
possibility to easily apply various optimisation 
methods. Making use of Genetic Algorithms 
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Fig. 1.: Parameters of the building model (described in Table 1)
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that can arrive at the optimal parameter com-
bination for the selected fitness variable may 
be seen as a popular approach. A range of 
studies indicate the advantages of parametric 
approach in architectural optimisation [11, 12], 
some of which use parametric approach for Li-
fe Cycle Assessment [13, 14].

Case study details
To test the possibility of applying Machine 

Learning in research and design process, the 
author has chosen a multifamily building for  
a case study. The building shape and featu-
res have been described by 10 parameters 
(as presented in fig. 1 and described in Table 
01). The parameters could be changed wi-
thin predefined ranges in order to test various 
combinations resulting in a unique multifamily 
building model in each case.

The building covered a constant area of 
1600m2. The material composition of the walls, 
roofs and floors was to remain a constant va-
lue as well whereas it was possible to modi-
fy the thicknesses of insulation layers. Material 
GHG emissions data was gathered by the au-
thor from multiple sources, mainly by means of 
analysing products available in polish market, 
for which an EPD was available [15], or from 
similar products available abroad with decla-
red EPDs [16]. The Carbon Emission factors for 
electricity were derived from the 2018 report by 
KOBiZE[17], and data for district heating was 
collected from the report by Veolia[18]. Local 
climate conditions were considered in the stu-
dy using the EPW file that contains climate data 
(Warszawa Okęcie 123750 IMGW). 

Methods for finding the minimal 
optimized Total Carbon Footprint
Theoretically, it would be possible to si-

mulate all possible parameter values and se-
lect the most beneficial combination (the lo-
west Total Carbon Footprint), but this appro-
ach seems rather impracticable. The number 
of possible combinations increases expo-
nentially with each additional dimension (pa-
rameter) added. With higher numbers of po-
ssible solutions, it is often hard to simulate 
each case. Therefore, an approach that ta-
kes advantage of Machine Learning predic-
tion power in order to search through the en- tire design space has been suggested. Given 

a trained Machine Learning model, it is po-
ssible to generate hundreds of thousands of 
variants in the matter of seconds. A different 
approach to the issue, namely the one apply-
ing a Genetic Algorithm to find the optimal 
solution, had been tested by the author in  
a previous study [19].

Machine Learning  
applied in Design Exploration
The first step to apply a supervised Machine 

Learning algorithm is to find or generate the 
data that can be used in the training process. 
The full design space of the problem (all possi-

ble combinations of parameters) consists in 
over twenty seven quadrillion possible combi-
nations. Design of Experiment  was planned 
on a less numerous set of parameters that re-
presents the design space (fig. 2). Each case 
has been generated using values from the pre-
defined range in a random manner.

Simulating various fenestration ratios along 
non-south oriented facades (west, east and 
north oriented) was omitted in the present 
study, as the previous analyses [20] confir-
med that the correlation is almost linear – lar-
ger fenestration areas along non-south orien-
ted facades resulted in higher level of Car-
bon Footprint. 

Table 1. – Parameters considered in the Case Study

Parameter number Parameter Range

1 Width 12.0 – 24.0m

2 Levels 2-5

3,4,5,6 Window density north, west, south, east 0.15-0.60

7 Wall insulation thickness 0.13-0.83m

8 Roof insulation thickness 0.18-0.88m

9 Ground insulation thickness 0.10-0.80m

10 Shading length 0.0-2.0m

Fig. 2. The input parameters for data 
generation for Machine Learning Training Set.

Fig. 3.: The results of the machine learning model training. First two diagrams indicate 
histograms of predicted and actual values from the test set. The third diagram shows the 
relationship between actual (simulated values) and the predicted ones.



The following step was to generate all the 
possible iterations of the parameters. The list 
was generated with the use of Python code. 
This resulted in a tally of 311040 possibilities. 
1500 randomly selected cases with different 
parameter combinations were saved to a.csv 
file and subjected to simulation with the use 
Grasshopper Programme. For each case, the 
script led to evaluation of the design by cal-
culating the Embodied Carbon using LCA To-
ol plugin for Grasshopper  [14], and Operatio-
nal Carbon level using Dynamic Simulation. 
Dynamic Simulation was performed in Ener-
gyPlus, using Honeybee plugin for the Gras-
shopper Programme [21]. 

Training the Machine  
Learning Model
The process of training Machine Learning 

model was performed in the Python environ-
ment. The approach proposed by Theodo-
re Galanos [6], analysed in the present study 
was followed by two consecutive steps. Two 
separate machine learning models (for Embo-
died and Operational Carbon) were trained in 
Python using a supervised learning algorithm - 
Gradient Boosting Regressor (GBR) from Sci-
Kit Learn library. The results were summarised 
and resulted in Total Carbon Footprint. The 
combined model explains over 99% of the va-
riance. Mean absolute error is estimated to be 
at the value of about 3600 kg of CO2eq (fig. 3). 

Exploring the Design Space
The following step was to predict the Total 

Carbon Footprint for much greater number of 
designs using the prediction offered by Ma-
chine Learning. A much bigger list of features 
was created that consisted of 100,000 cases 
(feature combinations). The results were then 
predicted using previously trained model in 
less than 2 minutes. 

The results were displayed on a scatterplot 
(Embodied Carbon with regards to Operatio-
nal Carbon, with colour coding Total Carbon 
Footprint) which presents general distribution 
of the outcomes (fig. 4). The optimal solution 
is the one that properly balances between 
Embodied Carbon and Operational Carbon, 
it is neither a solution with the lowest Embo-
died Carbon nor with the lowest Operatio-
nal Carbon. The influence of the building he-
ight on the carbon footprint also seems to be 
important (fig. 5). Higher buildings (dark red) 
are positioned further to the right than the rest 
of the variables. The lowest buildings (violet) 
seem to have higher level of Operational Car-
bon Footprint. The optimal solution then sho-
uld consist of 3 or 4 levels. The density si-
deplots confirm observations from the ma-
in scatterplot.

An optimal thickness value for Wall Insu-
lation and Roof Insulation may be provided 
which is neither the maximum nor the mini-
mum value (fig. 6), but rather consist in opti-

Fig. 5. The influence of building height on Total Carbon Footprint. The lowest Total Carbon 
Footprint can be observed in the cases of 3 and 4 level buildings. The 2 level buildings have 
higher Embodied (Material) Carbon Footprint, while the 5 level buildings have higher 
Operational Carbon Footprint.

Fig. 4. The plot illustrates the distribution of results versus their Embodied and Operational 
Carbon Footprint. Black dots marks the positions of the lowest levels of Embodied Carbon, 
Total Carbon and Operational Carbon respectively.
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mal balance between Embodied Carbon of 
producing the insulation and the carbon saved 
in the Operational phase. On the other hand, 
the Ground insulation seems to have too insi-
gnificant effect on the Operational Carbon to 
be worth mentioning, so it is advisable to use 
the lowest thickness   ssible (the correlation 
matrix on fig. 7 shows the correlation between 
different parameters and the values of Opera-
tional and Embodied Carbon Footprint). Simi-
larly, the amount of glazing should also be mi-
nimized, because higher percentages of it le-
ad to cooling needs, which can hardly be ba-
lanced by reducing the need for heating. 

It can be observed that the Operational Car-
bon exerts a much greater influence on the To-
tal Carbon Footprint than the Embodied Car-
bon. Some of the features, however, exert  
a nonlinear impact on the results – for example 
as it has been observed from fig. 6. - the opti-
mal (minimal) Total Carbon Footprint is achie-
ved at medium Wall Insulation Thicknesses.

The optimal solution selected out of all the 
cases generated by the Machine Learning al-
gorithm yielded the value of 626368 kg of To-
tal Carbon Footprint. The parametric 3d mo-
del has been created using the parameter va-
lues selected by the algorithm (fig. 8).

This was further compared to an actual si-
mulation with the same parameters. The re-
sult amounted to 634777 kg, which denotes 
that the error for the Machine Learning Pre-
diction was at the level of 1,3%.

Applying Machine Learning 
Prediction in Integrated Design 
Process
Another possible usage of a trained Ma-

chine Learning model can be discussed by 
using a more real-life application. The trained 
ML model can be imported back to Gras-
shopper [6] to immediately estimate the Em-
bodied Carbon Footprint and Operational 
Carbon Footprint of a case generated in the 
program (fig. 9). This provides architects with 
the possibility to sketch designs based on 
their intuition with instant feedback. Thus, ML 
can be seen as a useful educational and pro-
ductivity-related tool.

Conclusions and further 
research
The Machine Learning approach is a pro-

mising method that can be used in the De-
sign Process. However, the tool still needs 
improvements, allowing for taking into con-
sideration more features: different building 
shapes, different construction materials and 
urban layout. The data used for training the 
model should also be gathered in a databa-
se, that would allow for further reuse in diffe-
rent case studies.

The experiments have shown that Machi-
ne Learning can be a useful research tool for 
exploring vast design spaces in the field of Su-

Fig.6. 4 Scatterplots illustrate the influence of Wall Insulation, Roof Insulation, Ground Insulation 
and Glazing Percentage along southern facade on the Total Carbon Footprint. The area with 
lowest Total Carbon Footprint is located in the bottom left part of each of the diagrams. In each 
of the building components analysed the situation is slightly different: for Wall and Roof 
Insulation the middle values seem to have the lowest Total Carbon Footprint, while for the 
Ground Insulation the lowest values have lower Total Carbon Footprint. 



stainable Architectural Design. Additionally, 
it can offer the possibility for architects to fre-
ely sketch building designs, while being pro-
vided with instant information feedback. The 
current situation requires, unfortunately, a lot of 
data to properly apply the power of ML appro-
ach. However, in the near future, given the po-
ssibility of web-based platforms that share ML 
models, it might be possible to use the instant 
feedback of ML algorithms in everyday work.
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Abstract: The built environment is considered 
responsible for at least 20-40% of greenhouse 
gases emission. The way we design may 
exert an impact on this percentage. A new 
paradigm, namely artificial intelligence, is 
arriving. More and more tasks are becoming 
automated via algorithms. How could this 
power be applied in order to strengthen 
our knowledge about the ways we design 
buildings? The author of the following paper 
presents a study in which carbon footprint 
yielded by a multifamily building is analysed. 
ML has been used to generate an extensive 
overview of the possible design solutions. 
This, in turn, made it possible to observe 
correlations between various parameters that 
resulted in a reduced carbon footprint.
Keywords: life cycle assessment, parametric 
optimization, artificial intelligence, AI, 
algorithms, ghg emissions, sustainable 
architecture, big data, machine learning (ML)

Streszczenie: WSPOMAGANE UCZENIEM 
MASZYNOWYM PROJEKTOWANIE ARCHI-
TEKTURY W CELU ZMNIEJSZENIA ŚLADU 
WĘGLOWEGO. Środowisko zabudowane od-
powiada za co najmniej 20 do 40% emisji ga-
zów cieplarnianych, a sposób, w jaki projektu-
jemy, może wpłynąć na tę wartość. Coraz wię-
cej zadań zostaje zautomatyzowanych za po-
mocą algorytmów. Jak możemy wykorzystać 
to narzędzie, aby wspomóc naszą wiedzę na 
temat sposobów projektowania budynków? 
Autor przedstawia badanie analizujące ślad 
węglowy budynku wielorodzinnego. Algorytm 
uczenia maszynowego został wykorzystany do 
wygenerowania obszernego przeglądu moż-
liwych rozwiązań projektowych. Umożliwiło to 
zaobserwowanie korelacji między różnymi pa-
rametrami, co pozwoliło na wybór kombinacji 
parametrów o najniższym śladzie węglowym.
Słowa kluczowe: ocena cyklu życia, optyma-
lizacja parametryczna, ślad węglowy, uczenie 
maszynowe

Fig. 8.  Optimal solution selected from ML generated cases. 

Fig.9. ML model predicts Total Carbon Footprint based on the values of the input sliders.
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