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Abstract. Under suitable assumptions, we study the existence of a weak nontrivial solution
for the following Steklov problem involving the p(x)-Laplacian

{
∆p(x)u = a(x)|u|p(x)−2u in Ω,
|∇u|p(x)−2 ∂u

∂ν
= λV (x)|u|q(x)−2u on ∂Ω.

Our approach is based on min-max method and Ekeland’s variational principle.
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1. INTRODUCTION

The purpose of this paper is to study the following Steklov problem involving
the p(x)-Laplacian

(Pλ)
{

∆p(x)u = a(x)|u|p(x)−2u in Ω,
|∇u|p(x)−2 ∂u

∂ν = λV (x)|u|q(x)−2u on ∂Ω,

where Ω ⊂ RN (N ≥ 2) is a bounded smooth domain, λ is a positive parameter,
a ∈ L∞(Ω) with ess infΩa > 0, p, q ∈ C(Ω̄), V ∈ Ls(x)(∂Ω) such that N−1

p(x)−1 < s(x),
for all x ∈ ∂Ω and ν is the outer unit normal to ∂Ω.

The study of differential equations and variational problems with nonstandard
p(x)-growth conditions is a new and interesting topic. The study of this kind of operator
have been an interesting topic like electrorheological fluids (see [30]), elastic mechanics
(see [33]), stationary thermo-rheological viscous flows of non-Newtonian fluids and
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image processing (see [7]) and the mathematical description of the processes filtration
of an idea barotropic gas through a porous medium (see [3]). Many results have been
obtained on this kind of problems, for instance we here cite [2, 5, 8, 9, 15, 18, 19,27, 28].

The inhomogeneous Steklov problems involving the p-Laplacian has been the object
of study in many paper (one can see [24]), in which the authors have studied this class
of inhomogeneous Steklov problems in the cases of p(x) ≡ p = 2 and p(x) ≡ p > 1,
respectively.

In the following, let us recall that, S.G. Deng in [10], studied problem (Pλ) in
the particular case when V (x) ≡ 1, a(x) ≡ 1 and p(x) ≡ q(x), the author proved the
existence of infinitely many eigenvalues sequences and he present a sufficient conditions
for the infimum eigenvalues is zero and positive.

Inspired by the above-mentioned papers, we study problem (Pλ). In this new
situation we will show, firstly and under appropriates conditions, that for any λ > 0
the problem (Pλ) has a weak nontrivial solution with negative energy. Moreover, by
using Ekeland’s variational principle (see [12]), we showed the existence of continuous
spectrum. The paper is organized as follows. In Section 2, we recall the definition of
variable exponent Lebesgue spaces, Lp(x)(Ω), as well as Sobolev spaces,W 1,p(x)(Ω) and
W

1,p(x)
0 (Ω). In Section 3, we give the main results. Finally their proofs are presented

in Section 4.

2. NOTATIONS AND PRELIMINARIES

In this section, we recall some definitions and basic properties of the generalized
Lebesgue Sobolev spaces Lp(x)(Ω), W 1,p(x)(Ω) and W 1,p(x)

0 (Ω) (for details, see [14, 23,
25]).

Set
C+(Ω) := {h : h ∈ C(Ω), h(x) > 1 for allx ∈ Ω}.

For any p ∈ C+(Ω) such that

1 < p− := inf
x∈Ω

p(x) ≤ p(x) ≤ p+ := sup
x∈Ω

p(x) < +∞, (2.1)

we denote

Lp(x) =
{
u : u is a measurable real-valued function such that

∫

Ω

|u(x)|p(x)dx <∞
}
.

We recall the following so-called Luxemburg norm on this space defined by the formula

|u|p(x) = inf
{
µ > 0 :

∫

Ω

∣∣∣u(x)
µ

∣∣∣
p(x)

dx ≤ 1
}
.

Variable exponent Lebesgue spaces are like classical Lebesgue spaces in many respects:
they are Banach spaces, they are reflexive if and only if 1 < p− ≤ p+ < ∞ and
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continuous functions are dense if p+ <∞. The inclusion between Lebesgue spaces also
generalizes naturally: if 0 < |Ω| <∞ and p1, p2 are variable exponents so that p1(x) ≤
p2(x) a.e. x ∈ Ω then there exists a continuous embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

We denote by Lp′(x)(Ω) the conjugate space of Lp(x)(Ω), where 1
p(x) + 1

p′(x) = 1.
For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) the Hölder inequality

∣∣∣
∫

Ω

uvdx
∣∣∣ ≤

( 1
p−

+ 1
(p′)−

)
|u|p(x)|v|p′(x) (2.2)

holds true (see [14] and [23]).
Moreover, if h1, h2 and h3 : Ω→ (1,∞) are three Lipschitz continuous functions

such that 1/h1(x) + 1/h2(x) + 1/h3(x) = 1, then for any u ∈ Lh1(x)(Ω), v ∈ Lh2(x)(Ω)
and w ∈ Lh3(x)(Ω), the following inequality holds ([13, Proposition 2.5]):

∣∣∣
∫

Ω

uvw dx
∣∣∣ ≤

( 1
h−1

+ 1
h2
− + 1

h3
−

)
|u|h1(x)|v|h2(x)|w|h3(x). (2.3)

The modular on the space Lp(x)(Ω) is the map ρp(x) : Lp(x)(Ω)→ R defined by

ρp(x)(u) :=
∫

Ω

|u|p(x)dx,

and it satisfies the following proposition.
Proposition 2.1 ([23]). For all u, v ∈ Lp(x)(Ω), we have
(1) |u|p(x) < 1 (resp. = 1, > 1)⇔ ρp(x)(u) < 1 (resp. = 1, > 1),
(2) min(|u|p

−

p(x), |u|
p+

p(x)) ≤ ρp(x)(u) ≤ max(|u|p
−

p(x), |u|
p+

p(x)),
(3) ρp(x)(u− v)→ 0⇔ |u− v|p(x) → 0.
Proposition 2.2 ([11]). Let p and q be two measurable functions such that
1 ≤ p(x)q(x) ≤ ∞ for a.e. x ∈ Ω and p ∈ L∞(Ω). Let u ∈ Lq(x)(Ω), u 6= 0.
Then

min(|u|p
+

p(x)q(x), |u|
p−

p(x)q(x)) ≤ ||u|p(x)|q(x) ≤ max(|u|p
−

p(x)q(x), |u|
p+

p(x)q(x)).

The Lebesgue-Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) :=
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
,

and equipped with the norm

‖u‖1,p(x) := |u|p(x) + |∇u|p(x).

It is well known [16] that, in view of (2.1), both Lp(x)(Ω) and W 1,p(x)(Ω), equipped
respectively with the above norms, are separable, reflexive and uniformly convex
Banach spaces. When a ∈ L∞(Ω) with ess infΩa > 0, for any u ∈W 1,p(x)(Ω), define

‖u‖a := inf
{
λ > 0 :

∫

Ω

(∣∣∣∇u(x)
λ

∣∣∣
p(x)

+ a(x)
∣∣∣u(x)
λ

∣∣∣
p(x))

dx ≤ 1
}
.
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Then, it is easy to see that ‖u‖a is a norm on W 1,p(x)(Ω) equivalent to ‖u‖1,p(x).
In what follows, we will use ‖u‖a instead of ‖u‖1,p(x) on E = W 1,p(x)(Ω).

We have the following proposition.
Proposition 2.3 ([16]). Put

ρa(x),p(x)(u) =
∫

Ω
(|∇u|p(x) + a(x)|u|p(x))dx.

For u ∈ E, we have

(1) ‖u‖a ≥ 1⇔ ‖u‖p−a ≤ ρa(x),p(x)(u) ≤ ‖u‖p+

a ,
(2) ‖u‖a ≤ 1⇔ ‖u‖p+

a ≤ ρa(x),p(x)(u) ≤ ‖u‖p−a .
For a given measurable function a : ∂Ω → R, we define the weighted variable

exponent Lebesgue space by

L
p(x)
a(x)(∂Ω) :=

{
u |u : ∂Ω→ R is a mesurable and

∫

∂Ω

|a(x)||u(x)|p(x)dσx < +∞
}

with the norm

|u|(p(x),a(x)) = |u|
L
p(x)
a(x)(∂Ω) = inf

{
τ > 0 :

∫

∂Ω

|a(x)|
∣∣∣u(x)
τ

∣∣∣
p(x)

dσx ≤ 1
}
,

where dσx is the measure on the boundary. Then, Lp(x)
a(x)(∂Ω) is a Banach space.

In particular, when a(x) ≡ 1 on ∂Ω, Lp(x)
a(x)(∂Ω) = Lp(x)(∂Ω).

Proposition 2.4. Let
ρ(u) =

∫

∂Ω
|a(x)||u(x)|p(x)dσ.

For u, uk ∈ Lp(x)
a(x)(∂Ω) (k = 1, 2, . . .), we have

(1) |u|(p(x),a(x)) ≥ 1⇔ |u|p
−

(p(x),a(x)) ≤ ρ(u) ≤ |u|p
+

(p(x),a(x)),
(2) |u|(p(x),a(x)) ≤ 1⇔ |u|p

+

(p(x),a(x)) ≤ ρ(u) ≤ |u|p
−

(p(x),a(x)),
(3) |uk|(p(x),a(x)) → 0⇔ ρ(uk)→ 0,
(4) |uk|(p(x),a(x)) →∞⇔ ρ(uk)→∞.

For A ⊂ Ω, denote by p−(A) = inf
x∈A

p(x), p+(A) := sup
x∈A

p(x). Define

p∂(x) = (p(x))∂ =





(N − 1)p(x)
N − p(x) , if p(x) < N,

∞, if p(x) ≥ N,

p∂r(x)(x) := r(x)− 1
r(x) p∂(x),

where x ∈ ∂Ω, r ∈ C(∂Ω) with r− = inf
x∈∂Ω

r(x) > 1
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Throughout this paper, we assume the following conditions:
(H) 1 ≤ q+ < p−, p−(∂Ω) < p∂(x), N−1

p(x)−1 < s(x), for all x ∈ ∂Ω and V ∈ Ls(x)(∂Ω)
such that V > 0 in Ω0 ⊂⊂ ∂Ω with measσ(Ω0) > 0.

In the following, we recall an important theorem which will be needed throughout this
paper.
Theorem 2.5 ([10, Theorem 2.1]). Assume that the boundary of Ω possesses the cone
property and p ∈ C(Ω) with p− > 1. Suppose that a ∈ Lr(x)(∂Ω), r ∈ C(∂Ω) with

r(x) > p∂(x)
p∂(x)− 1 for all x ∈ ∂Ω. If q ∈ C(∂Ω) and

1 ≤ q(x) < p∂r(x)(x) for all x ∈ ∂Ω. (2.4)

Then, there exists a compact embedding W 1,p(x)(Ω) ↪→ L
q(x)
a(x)(∂Ω). In particular, there

is a compact embedding W 1,p(x)(Ω) ↪→ Lq0(x)(∂Ω), where 1 ≤ q0(x) < p∂(x) for all
x ∈ ∂Ω.
Definition 2.6. We say that u ∈ E is weak solution of (Pλ) if

∫

Ω

|∇u|p(x)−2∇u∇vdx+
∫

Ω

a(x)|u|p(x)−2uvdx− λ
∫

∂Ω

V (x)|u|q(x)−2uvdσ = 0,

for any v ∈ E.
We cite the very recent monograph by Kristály et al. [22] as a general reference for

the basic notions used in the paper.

3. THE MAIN RESULTS AND AN AUXILIARY RESULTS

Our first result established using min-max method is the following.
Theorem 3.1. Assuming that assumption (H) holds, then for all λ > 0, problem (Pλ)
has at least one non trivial weak solution with negative energy.

The second result is obtained, using Ekeland’s variational principal.
Theorem 3.2. Under assumption (H), there exists λ∗ such that, for all λ ∈ (0, λ∗),
problem (Pλ) has a non trivial weak solution.

We denote by s′ the conjugate exponent of the function s and we put

r(x) := s(x)q(x)
s(x)− q(x) .

Remark 3.3. Under assumption (H), we have s′(x)q(x) < p∂(x) and r(x) < p∂(x)
for all x ∈ ∂Ω, so, due to theorem 2.5,W 1,p(x)(Ω) ↪→ Ls

′
(x)q(x)(∂Ω) andW 1,p(x)(Ω) ↪→

Lr(x)(∂Ω) are compact and continuous.
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We mention also the following proposition that will be needed later.

Proposition 3.4. For u, v ∈ Ls
′
1(x)q(x)(Ω), one has

|u− v|q(x)s′1(x) → 0⇒ ||u|q(x) − |v|q(x)|s′1(x) → 0.

Proof. Fix x ∈ Ω. By the Lagrange theorem applied to f(u) = |u|q(x), there exists
C0(x) somewhere between u(x) and v(x) such that

f(u(x)− f(v(x))
u(x)− v(x) = f

′
(C0(x)),

thus,
∫

Ω

||u|q(x) − |v|q(x)|s
′
1(x) ≤

∫

Ω

[
|u− v|N2 max(|u|, |v|)q(x)−1

]s′1(x)
.

So, by using the Hölder inequality and Proposition 2.2 one has
∫

Ω

||u|q(x) − |v|q(x)|s
′
1(x) ≤ C(x)||u− v|s

′
1(x)|q(x) ≤ C(x)|u− v|c

s
′
1(x)q(x).

Finally, it remains to use Proposition 2.1 to finish the proof.

For u ∈ E, the energy functional associated to problem (Pλ) is defined as:

Φλ(u) = Ψ(u)− λJ(u),

where Ψ(u) =
∫

Ω

1
p(x) (|∇u|p(x) + a(x)|u|p(x))dx and J(u) =

∫

∂Ω

V (x)
q(x) |u|

q(x)dσ.

In order to formulate the variational problem (Pλ), we mention, using Remark 3.3,
that J is well defined as we have for all u ∈ E,

|J(u)| ≤ 1
q−
|V |Ls(x)(∂Ω)||u|q(x)|

Ls
′ (x)(∂Ω) ≤

1
q−
|V |s(x)|u|c1

Ls
′ (x)q(x)(∂Ω)

,

where c1 is a positive constant.

Proposition 3.5. Under assumption (H), Φλ ∈ C1(E,R) and u ∈ E is a critical
point of Φλ if and only if u is a weak solution for the problem (Pλ).

Proof. To show that Φλ ∈ C1(E,R), we show that for all ϕ ∈ E,

lim
t→0+

Φλ(u+ tϕ)− Φλ(u)
t

= 〈dΦλ(u), ϕ〉,
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and dΦλ : E → E∗ continuous, where we denote by E∗ the dual space of E. For all
ϕ ∈ E, we have

lim
t→0+

J(u+ tϕ)− J(u)
t

= d

dt
J(u+ tϕ)|t=0 = d

dt

∫

∂Ω

V (x)
q(x) |u+ tϕ|q(x)dσ|t=0

=
∫

∂Ω

∂

∂t

(
V (x)
q(x) |u+ tϕ|q(x)

)
|t=0dσ

=
∫

∂Ω

V (x)|u+ tϕ|q(x)−1sgn(u+ tϕ)ϕ|t=0dσ

=
∫

∂Ω

V (x)|u+ tϕ|q(x)−2(u+ tϕ)ϕ|t=0dσ

=
∫

∂Ω

V (x)|u|q(x)−2uϕdσ = 〈dJ(u), ϕ〉.

The differentiation under the integral is allowed for t close to zero. Indeed, for |t| < 1,
we have

|V (x)|u+ tϕ|q(x)−2(u+ tϕ)ϕ| ≤ |V (x)|(|u|+ |ϕ|)q(x)−1|ϕ| ∈ L1(∂Ω).

Since u, ϕ ∈ E, we have

|u|, |ϕ| ∈ E ↪→ Lq(x)(∂Ω) and |ϕ| ∈ E ↪→ Lr(x)(∂Ω).

Due to the fact that V ∈ Ls(x)(∂Ω), the conclusion is an immediate consequence of
inequality (2.3). For u ∈ E chosen, we show that dJ(u) ∈W−1,p′(x)(Ω) = E∗, where
1/p(x) + 1/p′(x) = 1. It is easy to see that dJ(u) is linear.

Since there is a continuous embedding E ↪→ Lr(x)(∂Ω), there exists a constant
M > 0 such that

|v|Lr(x)(∂Ω) ≤M‖v‖a for all v ∈ E. (3.1)
Using (2.3) and (3.1) we obtain

|〈dJ(u), ϕ〉| = |
∫

∂Ω

V (x)|u|q(x)−2uϕdσ|

≤
∫

∂Ω

|V (x)||u|q(x)−1|ϕ|dσ

≤ |V |Ls(x)(∂Ω)||u|q(x)−1|
L

q(x)
q(x)−1 (∂Ω)

|ϕ|Lr(x)(∂Ω)

≤M |V |Ls(x)(∂Ω)||u|q(x)−1|
L

q(x)
q(x)−1 (∂Ω)

‖ϕ‖a.

Hence there exists M1 = |V |Ls(x)(∂Ω)||u|q(x)−1|
L

q(x)
q(x)−1 (∂Ω)

> 0 such that

|〈dJ(u), ϕ〉| ≤M1‖ϕ‖a.
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Using the linearity of dJ(u) and the above inequality we deduce that dJ(u) ∈ E∗ =
W−1,p′(x)(Ω).

Lemma 3.6 ([4]). The map

Lq(x)(∂Ω) 3 u 7→ |u|q(x)−2u ∈ L
q(x)
q(x)−1 (∂Ω)

is continuous.

We conclude that J is Fréchet differentiable.
We can also prove (see [1]), that Ψ ∈ C1(E,R). So Φλ ∈ C1(E,R) because

Ψ, J ∈ C1(E,R). Moreover,

〈dΦλ(u), v〉 =
∫

Ω

(
|∇u|p(x)−2∇u∇v + a(x)|u|p(x)−2uv

)
dx− λ

∫

∂Ω

V (x)|u|q(x)−2uvdσ

for all v ∈ E. Let u be a critical point of Φλ. Then we have dΦλ(u) = 0E∗ , that is

〈dΦλ(u), v〉 = 0 for all v ∈ E,

which yields
∫

Ω

(
|∇u|p(x)−2∇u∇v + a(x)|u|p(x)−2uv

)
dx− λ

∫

∂Ω

V (x)|u|q(x)−2uvdσ = 0,

for all v ∈ E. It follows that u is a weak solution for the problem (Pλ).
By Definition 2.6, we have
∫

Ω

(
|∇u|p(x)−2∇u∇v + a(x)|u|p(x)−2uv

)
dx− λ

∫

∂Ω

V (x)|u|q(x)−2uvdσ = 0,

for all v ∈ E. That is 〈dΦλ(u), v〉 = 0 for all v ∈ E. We obtain dΦλ(u) = 0E∗ . Hence
u is a critical point of Φλ. This completes the proof of Proposition 3.5.

4. PROOF OF OUR RESULTS

4.1. PROOF OF THEOREM 3.1

To prove Theorem 3.1, we remark firstly that, under Remark 3.3, there exists C2 > 0
such that

|u|
Ls
′ (x)q(x)(∂Ω) ≤ C2‖u‖a for all u ∈ E. (4.1)

Now, we are in a position to show that Φλ possesses a nontrivial global minimum
point in E.

Lemma 4.1. Under assumption (H), the functional Φλ is coercive on E.
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Proof. First, we recall that in view of assumption (H), inequality (2.2), Remark 3.3,
Propositions 2.2 and 2.3, one has for every u ∈ E with ‖u‖a > 1

Φλ(u) ≥
∫

Ω

1
p(x) (|∇u|p(x)dx+ a(x)|u|p(x))− λ

q−

∫

∂Ω

|V (x)||u|q(x)dσ

≥ 1
p+ ρa(x),p(x)(u)− k λ

q−
|V |s(x)|uq(x)|

Ls
′ (x)(∂Ω)

≥ 1
p+ ‖u‖

p−
a −

kλ

q−
|V |s(x) min(Cq

−

2 ‖u‖q
−
a , Cq

+

2 ‖u‖q
+

a ),

where k is a positive constant. Since q+ < p−, we infer that Φλ(u)→∞ as ‖u‖ → ∞,
in other words Iλ is coercive on E.

In the sequel, put q−0 = inf
x∈Ω0

q(x) and p−0 = inf
x∈Ω0

p(x).

Lemma 4.2. Under assumption (H), there exists u0 ∈ E such that u0 ≥ 0, u0 6= 0
and Φλ(tu0) < 0, for t > 0 small enough.
Proof. Since q−0 < p−0 , then let ε0 > 0 be such that q−0 + ε0 < p−0 . On the other hand,
since q ∈ C(Ω0) it follows that there exists an open set Ω1 ⊂⊂ Ω0 ⊂⊂ ∂Ω such that
|q(x) − q−0 | < ε0 for all x ∈ Ω1. Thus, we conclude that q(x) ≤ q−0 + ε0 < p−0 for all
x ∈ Ω1.

Let u0 ∈ C∞0 (Ω) such that supp(u0) ⊂ Ω1 ⊂ Ω0, u0 = 1 in a subset Ω′1 ⊂ supp(u0),
0 ≤ u0 ≤ 1 in Ω1. Then we have

Φλ(tu0) =
∫

Ω

tp(x)

p(x) (|∇u0|p(x) + a(x)|u0|p(x)dx)− λ
∫

∂Ω

tq(x)

q(x)V (x)|u0|q(x)dσ

=
∫

Ω0

tp(x)

p(x) (|∇u0|p(x) + a(x)|u0|p(x)dx)− λ
∫

Ω1

tq(x)

q(x)V (x)|u0|q(x)dσ

≤ tp
−
0

p−0

∫

Ω0

(|∇u0|p(x) + a(x)|u0|p(x)dx)− λtq
−
0 +ε0

q−0

∫

Ω1

V (x)|u0|q(x)dσ.

Therefore
Φλ(tu0) < 0,

for t < δ1/(p−0 −q
−
0 −ε0) with

0 < δ < min
{

1,
λp−0

∫
Ω1
V (x)|u0|q(x)dσ

q+
0
∫

Ω0
(|∇u0|p(x) + a(x)|u0|p(x)dx)

}
.

Finally, we point out that
∫

Ω0

(
|∇u0|p(x) + a(x)|u0|p(x)dx

)
dx > 0.
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In fact, if ∫

Ω0

(
|∇u0|p(x) + a(x)|u0|p(x)dx

)
dx = 0,

then ‖u0‖a = 0 and consequently u0 = 0 in Ω which is a contradiction. The proof of
the lemma is complete.

In the sequel, put mλ = inf
u∈E

Φλ(u), then we have the following result.

Proposition 4.3. Assume that assumption (H) holds, then Φλ attains his global
minimizer in E, that is, there exists u∗ ∈ E such that Φλ(u∗) = mλ < 0.

Proof. Let {un} be a minimizing sequence, that is to say Φλ(un) → mλ. Suppose
{un} is not bounded, so ‖un‖a → +∞ as n→ +∞. Since Φλ is coercive, then

Φλ(un)→ +∞ as ‖un‖a → +∞.

This contradicts the fact that {un} is a minimizing sequence, so {un} is bounded in
E and therefore up to a subsequence, there exists u∗ ∈ E such that un ⇀ u∗ (weakly)
in E and un → u∗ (strongly) in Lq(x)(∂Ω), where 1 ≤ q(x) < p∂(x) for all x ∈ ∂Ω.

Since Ψ : E → R is sequentially weakly lower semicontinous (one can see [1]), then
we have

Ψ(u∗) ≤ lim inf
n→+∞

Ψ(un). (4.2)

Now, let us prove that if {un} ⊂ E is a sequence which converges weakly to u∗ on E,
then we have

J(un)→ J(u∗) as n→ +∞. (4.3)

For this purpose, recall that the compact embedding E ↪→ Ls
′
(x)q(x)(∂Ω). In addition,

using the Hölder type inequality we have

J(un)− J(u∗) ≤
k1
q−
|V |Ls(x)(∂Ω)||un|q(x) − |u∗|q(x)|

Ls
′ (x)(∂Ω).

By using Proposition 4.5, the convergence (4.3) holds true, so Φλ is weakly lower
semicontinuous and consequently

mλ ≤ Φλ(u∗) ≤ lim inf
n→+∞

Φλ(un) = mλ.

This completes the proof of Proposition 4.3.

Then, Theorem 3.1 is true.

4.2. PROOF OF THEOREM 3.2

In this section, we aim to prove Theorem 3.2 by using Ekeland’s variational principle.
To this aim, we need the following lemma.
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Lemma 4.4. Under the same hypothesis as in Theorem 3.1, for all ρ ∈ (0, 1) there
exist λ∗ > 0 and b > 0 such that for all u ∈ E with ‖u‖a = ρ we have

Φλ(u) ≥ b > 0 for all λ ∈ (0, λ∗).

Proof. Let u ∈ E with ‖u‖a = ρ, then, it follows from inequalities (2.2), (4.1) and
proposition (2.3) that

Φλ(u) ≥ 1
p+ ‖u‖

p−
a −

kλ

q−
|V |Ls(x)(∂Ω) min(Cq

−

2 ‖u‖q
−
a , Cq

+

2 ‖u‖q
+

a ),

=
k|V |Ls(x)(Ω)

q−
min((C2ρ)q

−
, (C2ρ)q

+
)

×
(

q−ρp
−

kp+|V |Ls(x)(∂Ω) min((C2ρ)q− , (C2ρ)q+)
− λ
)
.

(4.4)

By the above inequality, we remark that if we define

λ∗ = q−ρp
−

kp+|V |Ls(x)(∂Ω) min((C2ρ)q− , (C2ρ)q+)
, (4.5)

then, the result of Lemma 4.4 follows.

Before proving our main result, we give several propositions that will be used later.
Proposition 4.5.

lim
n→∞

∫

∂Ω

V (x)|un|q(x)−2un(un − u)dσ = 0.

Proof. Using inequality (2.3) we have
∫

∂Ω

V (x)|un|q(x)−2un(un − u)dx ≤ |V |Ls(x)(∂Ω)||un|q(x)−2un|
L

q(x)
q(x)−1 (∂Ω)

|un − u|Lr(x)(∂Ω).

Then if
||un|q(x)−2un|

L
q(x)
q(x)−1 (∂Ω)

> 1,

by Proposition 2.2, we get

||un|q(x)−2un|
L

q(x)
q(x)−1 (∂(Ω)

≤ |un|q
+

Lq(x)(∂Ω).

The compact embedding E ↪→ Lq(x)(∂Ω) ends the proof.

Proposition 4.6 ([31, Proposition 3.1]). Ψ′ is a mapping of S+ type, that is, if un ⇀ u
weakly in E and

lim sup
n−→∞

≺ Ψ′(un)−Ψ′(u), un − u �≤ 0,

then un −→ u in E
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Proof of Theorem 3.2. Let λ ∈ (0, λ∗), where λ∗ is given by (4.5). Then, it follows
from Lemma 4.4 that on the boundary of the ball centred at the origin and of radius
ρ in E, denoted by Bρ(0), we have

inf
∂Bρ(0)

Φλ > 0. (4.6)

Furthermore, from Lemma 4.2, there exists ϕ ∈ E such that Φλ(tϕ) < 0 for t > 0
small enough. Using (4.4), we deduce that

−∞ < c := inf
Bρ(0)

Φλ < 0. (4.7)

Let choose ε > 0. Then, we have

0 < ε < inf
∂Bρ(0)

Φλ − inf
Bρ(0)

Φλ.

Using the above information, the functional Φλ : Bρ(0) −→ R, is lower bounded on
Bρ(0) and Φλ ∈ C1(Bρ(0),R). Then by Ekeland’s variational principle there exists
uε ∈ Bρ(0) such that

{
c ≤ Φλ(uε) ≤ c+ ε,
Φλ(uε) < Φλ(u) + ε· ‖ u− uε ‖a, u 6= uε.

Since
Φλ(uε) ≤ inf

Bρ(0)
Φλ + ε ≤ inf

Bρ(0)
Φλ + ε < inf

∂Bρ(0)
Φλ,

we can infer that uε ∈ Bρ(0).
Now, let define Iλ : Bρ(0) −→ R by Iλ(u) = Φλ(u) + ε· ‖ u − uε ‖a . It is not

difficult to see that uε is a minimum point of Iλ and thus

Iλ(uε + t · v)− Iλ(uε)
t

≥ 0,

for t > 0 small enough and any v ∈ B1(0). It yields from the above relation that

Φλ(uε + t · v)− Φλ(uε)
t

+ ε· ‖ v ‖a≥ 0.

Letting t→ 0, we obtain

〈dΦλ(uε), v〉+ ε· ‖ v ‖a≥ 0

and this implies that ‖ dΦλ(uε) ‖a≤ ε. Therefore, we deduce that there exists a sequence
{un} ⊂ Bρ(0) such that

Φλ(un) −→ c and dΦλ(un) −→ 0E∗ , (4.8)
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where c is given by (4.7). Hence, we have that {un} is bounded in E. Thus, there
exists a subsequence again denoted by {un}, and u in E such that, {un} converges
weakly to u in E. So, in view of Remark 3.3, we have

un −→ u, in Lr(x)(∂Ω). (4.9)

Furthermore, a direct calculation shows that

≺ dΨλ(un)− dΨλ(u), un − u �
=≺ dΦλ(un)− dΦλ(u), un − u � +λ ≺ dJ(un)− dJ(u), un − u � .

(4.10)

On the other hand, it is clear that

≺ dΦλ(un)− dΦλ(u), un − u �=≺ dΦλ(un), un − u � − ≺ dΦλ(u), un − u �−→ 0.
(4.11)

Now, from hypothesis (H) and (4.9) we get

≺ dJ(un)− dJ(u), un − u � =
∫

∂Ω

V (x)
(
|un|q(x)−2un − |u|q(x)−2u

)
(un − u)dσ

≤
∫

∂Ω

|V (x)||un|q(x)−1|un − u|dσ

+
∫

∂Ω

|V (x)||u|q(x)−1|un − u|dσ.

Since
∫

∂Ω

|V (x)||un|q(x)−1|un − u|dσ

≤ |V (x)|Ls(x)(∂Ω)

∣∣∣|un|q(x)−1
∣∣∣
Lq(x)s′(x)(∂Ω)

|un − u|Lr(x)(∂Ω) −→ 0
(4.12)

and
∫

∂Ω

|V (x)||u|q(x)−1|un − u|dσ

≤ |V (x)|Ls(x)(∂Ω)

∣∣∣|u|q(x)−1
∣∣∣
Lq(x)s′(x)(∂Ω)

|un − u|Lr(x)(∂Ω) −→ 0,
(4.13)

combining (4.10), (4.12) and (4.13), we obtain

≺ dΨλ(un)− dΨλ(u), un − u �−→ 0.

Since dΨ is of (S+) type, then un −→ u in E. Moreover, Φλ ∈ C1(E,R), then we
conclude that

dΦλ(un)→ dΦλ(u) as n→∞. (4.14)
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Relations (4.8) and (4.14) shows that dΦλ(u) = 0 and thus u is a weak solution for
problem (Pλ). Moreover, by relation (4.8) it follows that Φλ(u) < 0 and thus, u is
a nontrivial weak solution for (Pλ).

Since Φλ(|u|) = Φλ(u), then problem (Pλ) has a nonnegative one.
The proof of Theorem 3.2 is complete.
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