PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parametric study on the spring-back effect in aa5052 alloy in the course of three-point roll bending process

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
Three-point roll bending is one of the most common forming processes employed to obtain the desired radius of curvature in the sheet metal operations. Upon the removal of the forming load, the sheet metal deforms to a lesser extent than that of the required dimension. This phenomenon is termed as spring-back and is considered the most challenging areas of research in three-point roll bending of sheet metals. This study aims to develop a numerical model using HyperWorks and Radioss solver to understand the influence of load, the distance between the forming rollers, and its thickness on the spring-back effect in the course of three-point roll bending of sheet metal (AA5052). The results of the numerical model are validated with the results of the experimental trials. Besides, a statistical model is developed to relate the amount of spring-back with the three-point roll bending process parameters.
Rocznik
Strony
128--134
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, Amritanagar, Coimbatore - 641 112 Tamil Nadu, India
  • Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, Amritanagar, Coimbatore - 641 112 Tamil Nadu, India
  • Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, Amritanagar, Coimbatore - 641 112 Tamil Nadu, India
Bibliografia
  • 1. Abvabi A., Mendiguren J., Rolfe B.F., Weiss M. (2014), Springback Investigation in Roll Forming of a V-Section, Applied me-chanics and materials, 553, 643–648.
  • 2. Ameen H.A. (2012), Effect of Sheet Thickness and Type of Alloys on the Springback Phenomenon for Cylindrical Die, American journal of scientific and industrial research, 480.
  • 3. Badr O.M., Rolfe B., Zhang P., Weiss M. (2017), Applying a new constitutive model to analyse the springbackbehaviour of titanium in bending and roll forming, International Journal of Mechanical Scienc-es, 128, 389–400,
  • 4. Belykh S., Krivenok A., Bormotin K., Stankevich A., Krupskiy R., Mishagin V., Burenin A. (2016), Numerical and Experimental Study of Multi-Point Forming of Thick Double-Curvature Plates from Alumi-num Alloy 7075, KnE Materials Science, vol (NA), 17–23.
  • 5. Davies R., Magee C. (1977), The effect of strain rate upon the bending behavior of materials, ASME, New York.
  • 6. Fortin P., Bull M., Moore D. (1983), An optimized aluminum alloy (x6111) for auto body sheet applications, SAE Technical Paper.
  • 7. Gandhi A., Raval H., (2006), Article Title, ASME 2006 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers Digital Collection, 107–116.
  • 8. Ghimire S., Emeerith Y., Ghosh R., Ghosh S., Barman R.N. (2017), Finite Element Analysis of an Aluminium Alloy Sheet in a V-Die Punch Mechanism Considering Spring-Back Effect, International Journal of Theoretical and Applied Mechanics, 12, 331–342.
  • 9. Guo X., Gu Y., Wang H., Jin K., Tao J. (2018), The Bauschinger effect and mechanical properties of AA5754 aluminum alloy in incre-mental forming process, The International Journal of Advanced Man-ufacturing Technology, 94, 1387–1396.
  • 10. Hansen N., Jannerup O. (1979), Modelling of elastic-plastic bending of beams using a roller bending machine, ASME, New York
  • 11. Hardt D., Roberts M., Stelson K.A. (1982), Closed-loop shape control of a roll-bending process, ASME, New York
  • 12. Hecker S. (1975), Formability of aluminum alloy sheets, ASME, New York
  • 13. Hill R. (1958), A general theory of uniqueness and stability in elastic-plastic solids, Journal of the Mechanics and Physics of Solids, 6, 236–249.
  • 14. Hu J., Marciniak Z., Duncan J. (2002), Mechanics of sheet metal forming, Elsevier, Oxford.
  • 15. HyperWorks (2010), HyperMesh, Version 11.
  • 16. HyperWorks (2014), Hyperworks 14.0 RADIOSS reference guide, Altair engineering.
  • 17. Khamneh M.E., Askari-Paykani M., ShahverdiH,.,Hadavi S.M.M., Emami M. (2016), Optimization of spring-back in creep age forming process of 7075 Al-Alclad alloy using D-optimal design of experiment method, Measurement 88, 278–286,
  • 18. Ktari A., Antar Z., Haddar N., Elleuch K. (2012), Modeling and computation of the three-roller bending process of steel sheets, Journal of mechanical science and technology, 26, 123–128.
  • 19. Kumar K.D., Appukuttan K., Neelakantha V., Naik P.S. (2014), Experimental determination of spring back and thinning effect of alu-minum sheet metal during L-bending operation, Materials & Design, 56, 613–619.
  • 20. Lee M.-G., Kim D., Kim C., Wenner M.L., Chung K. (2005), Spring-back evaluation of automotive sheets based on isotropic–kinematic hardening laws and non-quadratic anisotropic yield functions, part III: applications, International journal of plasticity, 21, 915–953.
  • 21. Liu Y., Wang L., Zhu B., Wang Y., Zhang Y. (2018), Identification of two aluminum alloys and springback behaviors in cold bending, Pro-cedia Manufacturing, 15, 701–708.
  • 22. Parsa M., Pishbin H., Kazemi M. (2012), Investigating spring back phenomena in double curved sheet metals forming, Materials & De-sign, 41, 326–337.
  • 23. Paulsen F., Welo T. (1996), Application of numerical simulation in the bending of aluminium-alloy profiles, Journal of Materials Pro-cessing Technology, 58, 274–285.
  • 24. Ramalingam V.V., Ramasamy P. (2017), Modelling corrosion behavior of friction stir processed aluminium alloy 5083 using poly-nomial: radial basis function, Transactions of the Indian Institute of Metals, 70, 2575–2589.
  • 25. Srivastav Y., Shinde S. (2010), Dynamic Simulation and Analysis of Plate Roll Bending Process for Forming a Cylindrical Shell,Proceedings of the HyperWorks Technology Conference 2010, Altair Technology Conference.
  • 26. Vignesh R.V., Padmanaban R., Datta M. (2018), Influence of FSP on the microstructure, microhardness, intergranular corrosion sus-ceptibility and wear resistance of AA5083 alloy, Tribology-Materials, Surfaces & Interfaces, 12(3), 157–169.
  • 27. VigneshV., Padmanaban R. (2018), Modelling of peak temperature during friction stir processing of magnesium alloy AZ91, IOP Confer-ence Series: Materials Science and Engineering, 310(1), 012019.
  • 28. Westermann I., Snilsberg K.E., Sharifi Z., Hopperstad O.S., Marthinsen K., Holmedal B. (2011), Three-point bending of heat-treatable aluminum alloys: influence of microstructure and texture on bendability and fracture behavior, Metallurgical and Materials Trans-actions, A 42, 3386–3398.
  • 29. Xing M.-Z., Wang Y.-G., Jiang Z.-X. (2013), Dynamic fracture be-haviors of selected aluminum alloys under three-point bending, De-fence Technology, 9, 193–200.
  • 30. Xu W., Ma C., Li C., Feng W. (2004), Sensitive factors in springback simulation for sheet metal forming, Journal of Materials Processing Technology, 151, 217–222, (2004).
  • 31. Yang M., Shima S. (1988), Simulation of pyramid type three-roll bending process, International Journal of Mechanical Sciences, 30, 877–886.
Uwagi
1. The authors express their sincere gratitude to Mr. Ashutosh Sinha, Senior Engineer, System Design and Detail Engineering Department, Larsen & Toubro Limited (Defense), Coimbatore for his guidance and support to perform numerical and experimental tests.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Identyfikator YADDA
bwmeta1.element.baztech-59e0c162-06e7-4849-baad-e1eeb08440ee