Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
For the stability of composite fibre spinning, the difference in and distribution of the polymer melt velocity during the spinning are among the factors of importance. Based on the basic equation for the control of composite spinning dynamics, boundary conditions are identified and reported in this paper. A mathematical model for the symmetric and asymmetric distribution of the melt flow velocity in the microhole of the spinneret of the composite spinning assembly was developed. The accuracy of the mathematical model was also ascertained. It gives a theoretical basis for the designing of a composite spinning assembly.
Czasopismo
Rocznik
Strony
49--53
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
- Donghua University, College of Mechanical Engineering, Shanghai, 201620, China
- Engineering Research Center of Advanced Textile Machinery, Ministry of Education, Shanghai, 201620, China
autor
- Donghua University, College of Mechanical Engineering, Shanghai, 201620, China
autor
- Donghua University, College of Mechanical Engineering, Shanghai, 201620, China
autor
- Donghua University, College of Mechanical Engineering, Shanghai, 201620, China
- Engineering Research Center of Advanced Textile Machinery, Ministry of Education, Shanghai, 201620, China
Bibliografia
- 1. Tao XM. Study of Fiber-Based WearWable Energy Systems. J Acc Chem Res. 2019; 52(2): 307-315.
- 2. Takeshi KJ, Radhakrishnan, Sadaaki A, Akira T, Norimasa O, Xia Jin, et al. High-Speed Melt Spinning of Bicomponent Fibers: Mechanism of Fiber Structure Development in Poly (Ethylene Terephthalate)/Propylene System. J Appl Polym. 1996; 6(11): 1913-1924.
- 3. Nakajima T. Advanced Fiber Spinning Technology. Woodhead: Cambridge; 1994.
- 4. Boonlertsamut J, Thumsorn S, Umemura T, Hamada H, Sakuma A. Spinnability and Characteristic of Polyoxymethylene-Based Core-Sheath Bicomponent Fibers. J Eng Fiber Fabr. 2019; 14:1-7.
- 5. Tallury SS, Pourdeyhimi B, Pasquinelli MA, Spontak RJ. Physical Microfabrication of Shape-Memory Polymer Systems Via Bicomponent Fiber Spinning. Macromol Rapid Commun. 2016; 37: 1837-1843.
- 6. Ayad E, Cayla A, Rault F,Gonthier A. Effect of Viscosity Ratio of Two Immiscible Polymers on Morphology in Bicomponent Melt Spinning Fibers. Adv Polym Technol. 2018; 4(37): 1-8.
- 7. Rwei SP, Lin YT, Su YY. Study of SelfCrimp Polyester Fibers. Polym Eng Sci. 2005; 6 (45): 838-845.
- 8. Tae HO. Melt Spinning and Drawing Process of PET Side-By-Side Bicomponent Fibers. J Appl Polym Sci. 2006; 101: 1362-1367.
- 9. Kikutani T, Radhakrishnan J, Arikawa S, Takaku A, Okui N, Jin X, et al. High-Speed Melt Spinning of Bicomponent Fibers: Mechanism of Fiber Structure Development in Poly (Ethylene Terephthalate)/Polypropylene System. J Appl Polym Sci. 1996; 62(11): 1913-1924.
- 10. Youhei K, Tomoaki T, Yutaka M, Wataru T, Takeshi K. Structure and Properties of Low-Isotacticity Polypropylene Elastomeric Fibers Prepared by SheathCore Bicomponent Spinning: Effect of The Composition of Sheath Layer with Constant High-Isotacticity Polypropylene Content. J Polym Eng. 2014; 70(3): 203-212.
- 11. Radharishhnan J, Kikutani T, Okui N. High-Speed Melt Spinning of Sheath-Core Bicomponent Polyester Fibers: High and Low Molecular Weight Poly (Ethylene Terephthalate) Systems. Text Res J. 1997; 67(9): 684-694.
- 12. Han CD, Shetty R. Studies on Multilayer Film Coextrusion I. The Rheology of Flat Film Coextrusion. Polym Eng Sci 1976; 16(10): 697-705.
- 13. Han CD, Shetty R. Studies on Multilayer Film Coextrusion. II. Interfacial Instability in Flat Film Coextrusion. Polym Eng Sci. 1978; 18(3): 180-186.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59e01c17-b863-4b3e-901a-9c64df78c0bb