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Abstract
For the stability of composite fibre spinning, the difference in and distribution of the polymer 
melt velocity during the spinning are among the factors of importance. Based on the basic 
equation for the control of composite spinning dynamics, boundary conditions are identified 
and reported in this paper. A mathematical model for the symmetric and asymmetric distri-
bution of the melt flow velocity in the microhole of the spinneret of the composite spinning 
assembly was developed. The accuracy of the mathematical model was also ascertained. It 
gives a theoretical basis for the designing of a composite spinning assembly.

Key words: composite fibre, spinning assembly, velocity field distribution, mathematical 
model.

Pei Feng1,2, 
Dashuang Liu1, 

Ronggen Zhang1,
 Chongchang Yang1,2*

1 Donghua University,  
College of Mechanical Engineering,

Shanghai, 201620, China
2 Engineering Research Center  
of Advanced Textile Machinery,  

Ministry of Education, 
Shanghai, 201620, China,

* e-mail: pfeng@dhu.edu.cn

To design composite fibre spinning com-
ponents, the difference in the flow veloc-
ity and field distribution between the two 
polymers in the orifice are the key param-
eters. However, at present, the design of 
spinning components and the determina-
tion of process parameters depend main-
ly on tradition and experience, and math-
ematical models of the temperature and 
velocity field distribution of composite 
melt flow, for theoretical guidance, have 
not been developed. Therefore, boundary 
conditions were identified for different 
orifice conditions, and a mathematical 
model for the melt velocity and tem-
perature field distribution of two kinds 
of polymers in the orifice of a composite 
spinning spinneret was developed in this 
paper.

	 Mathematical modeling
The melt wall slip is presumed, and the 
slip velocity at the wall is Vs, and Vs is 0 
when there is no slip. The cross section of 
composite fibre is divided into symmet-
ric and asymmetric shapes. The bound-
ary conditions are described according 
channel shapes, and the mathematical 
model for the velocity field distribution 
is derived. In order to simplify the calcu-
lation, the extrusion flow process of the 
composite fibre polymer melt is assumed 
as follows without involving crystallisa-
tion and orientation.

(1)	The polymer melt is incompressible.

(2)	The polymer melt flow is stable and 
laminar.

	 Introduction
With the emergence of the demand for 
smart, functional and other new types 
of fibres, traditional fibre materials are 
being endowed with electrical, optical, 
information transmission, storage and 
other functions [1]. Composite fibre is 
the main variety of functional fibre, used 
in industries dedicated to the military, 
hospitals and high-end special fields like 
anti-counterfeiting, anti-statics, shielding 
etc.

To prepare composite fibre, two or more 
polymer melts or solutions with different 
properties are taken, and use of the ra-
tio and viscosity of components is made 
to introduce difference in the variety. 
The melts or solutions are made to flow 
into the spinning equipment, merged in 
a certain part, and squirted out from the 
same spinneret micropore to form a fi-
bre [2-3]. Fibre composite types include 
the juxtaposition composite, leather core 
composite, peel composite, etc., shown 
in Figure 1. Currently, research on new 
composite fibres is mainly focused on the 
leather core composite and parallel com-
posite [4-6].

Literature reports [7-8] on research on 
the theory of composite fibre spinning 
are focused on the influence of different 
structural and technological parameters 
on crimp ability. Research groups [9-11] 
carried out a spinning simulation of the 
dynamics of composite spinning with 
a leather core and developed a math-
ematical model of the temperature and 
heat conduction of a fibre section.
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Figure1 Variety of bi-component fibre cross-sections: (a) side-by-side, 

sheath–core with concentric (b) and eccentric (c) configurations, (d) islands-in-the-sea, 

(e) alternating segments with stripes, (f) pies, (g) citrus, (h) tipped trilobal [3]. 
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0 when there is no slip. The cross section of composite fibre is divided into symmetric 
and asymmetric shapes. The boundary conditions are described according channel 
shapes, and the mathematical model for the velocity field distribution is derived. In 
order to simplify the calculation, the extrusion flow process of the composite fibre 
polymer melt is assumed as follows without involving crystallisation and orientation. 

 

 

composite and parallel composite [4-6]. 

 

Figure1 Variety of bi-component fibre cross-sections: (a) side-by-side, 

sheath–core with concentric (b) and eccentric (c) configurations, (d) islands-in-the-sea, 

(e) alternating segments with stripes, (f) pies, (g) citrus, (h) tipped trilobal [3]. 

Literature reports [7-8] on research on the theory of composite fibre spinning are 
focused on the influence of different structural  and technological parameters on  
crimp ability. Research groups [9-11] carried out a spinning simulation of the 
dynamics of composite spinning with a leather core and developed a mathematical 
model of the temperature and heat conduction of a fibre section. 

To design composite fibre spinning components, the difference in the flow 
velocity and field distribution between the two polymers in the orifice are the key 
parameters. However, at present, the design of spinning components and the 
determination of process parameters depend mainly on  tradition and experience, and 
mathematical models of the temperature and velocity field distribution of composite 
melt flow, for theoretical guidance, have not been developed. Therefore, boundary 
conditions were identified for different orifice conditions, and a mathematical model 
for the melt velocity and temperature field distribution of two kinds of polymers in the 
orifice of a composite spinning spinneret was developed in this paper. 
2. Mathematical modeling 

 The melt wall slip is presumed, and the slip velocity at the wall is Vs, and Vs is 
0 when there is no slip. The cross section of composite fibre is divided into symmetric 
and asymmetric shapes. The boundary conditions are described according channel 
shapes, and the mathematical model for the velocity field distribution is derived. In 
order to simplify the calculation, the extrusion flow process of the composite fibre 
polymer melt is assumed as follows without involving crystallisation and orientation. 

a) b) c) d)

e) f) g) h)

Figure 1. Variety of bi-component fibre cross-sections: a) side-by-side, sheath-core with 
concentric b) and eccentric c) configurations, d) islands-in-the-sea, e) alternating segments 
with stripes, f) pies, g) citrus, h) tipped trilobal [3].
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(3)	The temperature of the polymer melt 
does not change with time, and the 
thermal convection is negligible. It 
is presumed that the heat conduction 
and viscosity dissipation dominate 
the temperature field and that the 
temperature of channel walls remains 
unchanged.

(4)	The difference in density between 
the two melts has no influence on the 
flow.

(5)	The relationship between the flow 
dynamics and heat of the two poly-
mer melts is ignored.

(6)	The change in viscosity of the pol-
ymer melt is related to the tempera-
ture, and follows the Arrhenius rela-
tionship.

For melt spinning, the basic equations 
used in general simulation research are 
shown in Table 1.

Velocity field distribution
The fibre cross-section shapes are con-
sidered symmetrical and asymmetrical 
separately. Therefore, two kinds of poly-

mers are considered in the flow through 
the channel resulting in composite pro-
filed fibre. The melt is assumed as wall 
slippage, and the wall slip velocity ac-
cording to the channel condition controls 
the boundary conditions. The velocity 
field and temperature field distribution 
function are derived theoretically.

Symmetric distribution
The hole is assumed as being symmetric 
in shape, similar to that of a sheath-core 
composite fibre. The core layer of the 
melt is considered as a completely cov-
ered cortex melt. The polymer melt flow 
is assumed as the total flow exhibited. 
The direction of shear velocity is paral-
lel to the axis, similar to one-dimensional 
laminar flow, at constant pressure gradi-
ent on the cross section. The time has no 
effect on the flow and maximum speed 
occurring in melt II. Thus, there are two 
kinds of polymer melt flow, as shown in 
Figure 2.

The boundary conditions are as follows:
a.	 when r = 0, shear stress τ = 0, 
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Figure 2 Schematic diagram of the symmetrically distributed flow model of the composite 

melt 

The boundary conditions are as follows: 

a. when r = 0，shear stress 0  ， 0T
r





， ； 

b. when r = B1，the velocities on both sides of the interface are equal， 21 zz vv  ，

21 rzrz   ， ； 

c. when r= B, there is slip on the wall surface and the velocity is sv ，then

1z sv v  , ； 

The z-component of the momentum conservation equation in the cylindrical 
coordinate system is : 
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Since the flow is a one-dimensional laminar, the derivative of z with respect to z 
and the z-direction component of shear stress is 0. Equation (1) becomes: 
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1 wT T
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On integrating both sides: 
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and using dF
dz

   , the shear stress equation becomes: 
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Where, K is the melt consistency, ____??? the shear rate, and n the 
non-Newtonian exponent. 
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2.1.2 Asymmetric distribution 

The two polymers melts flow next to each other and the channel shape is 
asymmetric. The two polymer components are in contact with the surface of the wall, 
and the boundary layer is common. Due to the differences in the properties of melts, 
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Figure 2. Schematic diagram of the symmetrically distributed flow model of the composite 
melt.

Table 1. Governing equation of melt spinning dynamics.
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(1) The polymer melt is incompressible. 
(2) The polymer melt flow is stable and laminar. 
(3) The temperature of the polymer melt does not change with time, and the thermal 
convection is negligible. It is presumed that the heat conduction and viscosity 
dissipation dominate the temperature field and that the temperature of channel walls 
remains unchanged. 
(4) The difference in density between the two melts has no influence on the flow. 
(5) The relationship between the flow dynamics and heat of the two polymer melts is 
ignored. 
(6) The change in viscosity of the polymer melt is related to the temperature, and 
follows the Arrhenius relationship. 

For melt spinning, the basic equations used in general simulation research are 
shown in Table 1. 
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2.1 Velocity field distribution 

The fibre cross-section sharpies are considered symmetrical and asymmetrical 
separately. Therefore, two kinds of polymers are considered in the flow through the 
channel resulting in composite profiled fibre. The melt is assumed as wall slippage, 
and the wall slip velocity according to the channel condition controls the boundary 
conditions. The velocity field and temperature field distribution function are derived 
theoretically. 

2.1.1 Symmetric distribution 

The hole is assumed as being symmetric in shape, similar to that of a sheath-core 
composite fibre. The core layer of the melt is considered as a completely covered 
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cortex melt. The polymer melt flow is assumed as the total flow exhibited. The 
direction of shear velocity is parallel to the axis, similar to one-dimensional laminar 
flow, at constant pressure gradient on the cross section. The time has no effect on the 
flow and maximum speed occurring in  melt II. Thus, there are two kinds of polymer 
melt flow, as shown in Figure 2. 

 

Figure 2 Schematic diagram of the symmetrically distributed flow model of the composite 

melt 

The boundary conditions are as follows: 

a. when r = 0，shear stress 0  ， 0T
r





， ； 

b. when r = B1，the velocities on both sides of the interface are equal， 21 zz vv  ，

21 rzrz   ， ； 

c. when r= B, there is slip on the wall surface and the velocity is sv ，then

1z sv v  , ； 

The z-component of the momentum conservation equation in the cylindrical 
coordinate system is : 
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Since the flow is a one-dimensional laminar, the derivative of z with respect to z 
and the z-direction component of shear stress is 0. Equation (1) becomes: 

0zdv
dr



1 2T T

1 wT T
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Asymmetric distribution
The two polymers melts flow next to each 
other and the channel shape is asymmet-
ric. The two polymer components are in 
contact with the surface of the wall, and 
the boundary layer is common. Due to 
the differences in the properties of melts, 
the distribution of the velocity field is 
discontinuous, a model diagram of the 
flow is shown in Figure 3.

For the two kinds of melts, the viscosities 
are different, and therefore the maximum 
speed is located on the low viscosity side. 
Assuming that for melt II the viscosity is 
higher than that of I, the maximum speed 
occurs as shown in Figure 3. Boundary 
conditions are as follows:

(1)	when r = B0, the speed is largest 
ν = νmax, and shear stress τrz2 = 0;

(2)	when r = B1, the velocities on both 
sides of the interface are equal, 
νz1 = νz2, τrz1 = τrz2;

(3)	when r = B, the velocity of the wall is 
νs1, νz1 = νs1, T1 = Tw;

(4)	when r = 0, the velocity of the wall is 
νs2, νz2 = νs2.

When 0 < r < B0, the velocity gradient is

positive and 

 

 

the distribution of the velocity field is discontinuous. a model diagram of the flow is 
shown in Figure 3. 

 

Figure 3 Schematic diagram of the asymmetric distribution model of the composite flow 

For the two kinds of melts, the viscosities are different, and therefore the 
maximum speed is located on the low viscosity side. Assuming that for melt Ⅱthe 
viscosity is higher than that of I, the maximum speed occurs as shown in Figure 
3.Boundary conditions are as follows: 

(1) when r = B0, the speed is largest maxvv  ，and shear stress ； 
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The z-component of the momentum conservation equation (1) in the cylindrical 
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Using the assumptions and boundary conditions, equation (10) is simplified as: 

02 rz

21 rzrz  

1 wT T

0
dr
dvz .

The z-component of the momentum con-
servation Equation (1) in the cylindrical 
coordinate system is:

 

 

the distribution of the velocity field is discontinuous. a model diagram of the flow is 
shown in Figure 3. 

 

Figure 3 Schematic diagram of the asymmetric distribution model of the composite flow 

For the two kinds of melts, the viscosities are different, and therefore the 
maximum speed is located on the low viscosity side. Assuming that for melt Ⅱthe 
viscosity is higher than that of I, the maximum speed occurs as shown in Figure 
3.Boundary conditions are as follows: 

(1) when r = B0, the speed is largest maxvv  ，and shear stress ； 

(2) when r= B1：,  the velocities on both sides of the interface are equal, 21 zz vv  ，

； 

(3) when r= B,  the velocity of the wall is 1sv ， 1 1z sv v ， ； 

(4) when r=0,  the velocity of the wall is 2sv ， 2 2z sv v ； 

When 00 r B  ，the velocity gradient is positive and ； 

The z-component of the momentum conservation equation (1) in the cylindrical 
coordinate system is: 

    
    

 
       

    
 
      
         

     （10） 

Using the assumptions and boundary conditions, equation (10) is simplified as: 

02 rz

21 rzrz  

1 wT T

0
dr
dvz

(10)

Using the assumptions and boundary con-
ditions, Equation (10) is simplified as:

 

 

    
    

 
       

     （11） 

Its integration gives (12)： 
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Using dF
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  , the expression of shear stress is obtained as：
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By applying the boundary condition r = B0 to the equation above, the integral 
constant is obtained, and the equation is reduced to: 
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Equation (13) can be obtained also by integrating the constitutive equation of the 
power-law of fluid and formula (12). 
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On using the boundary conditions of r = 0, the velocity distribution of melt Ⅱ
can be obtained as:  
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When 0B r B  ，the velocity gradient is negative. Then 0
dr
dvz . Since there are 

two kinds of polymer melts, the integration of both results in the velocity distribution 
function of the two, respectively. 
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On applying boundary conditions: r = B, the melt Ⅰ velocity distribution 
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On applying boundary conditions: r = B, 
the melt I velocity distribution function 
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On combining Equations (21) with (19), 
the velocity distribution of melt II can be 
obtained.

In summary, the velocity distributions of 
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On combining (21) with (19), the velocity distribution of meltⅡcan be obtained. 
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2.2 Temperature field distribution 

Similar to the flow distribution model for the velocity field of the composite, the 
temperature field distribution can be divided into two types, viz symmetric and 
asymmetric. 
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According to the Fourier law of heat conduction, the heat flux q is: 
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Figure 3. Schematic diagram of the asymmetric distribution model of the composite flow.

 

 

the distribution of the velocity field is discontinuous. a model diagram of the flow is 
shown in Figure 3. 

 

Figure 3 Schematic diagram of the asymmetric distribution model of the composite flow 

For the two kinds of melts, the viscosities are different, and therefore the 
maximum speed is located on the low viscosity side. Assuming that for melt Ⅱthe 
viscosity is higher than that of I, the maximum speed occurs as shown in Figure 
3.Boundary conditions are as follows: 

(1) when r = B0, the speed is largest maxvv  ，and shear stress ； 

(2) when r= B1：,  the velocities on both sides of the interface are equal, 21 zz vv  ，

； 

(3) when r= B,  the velocity of the wall is 1sv ， 1 1z sv v ， ； 

(4) when r=0,  the velocity of the wall is 2sv ， 2 2z sv v ； 

When 00 r B  ，the velocity gradient is positive and ； 

The z-component of the momentum conservation equation (1) in the cylindrical 
coordinate system is: 

    
    

 
       

    
 
      
         

     （10） 

Using the assumptions and boundary conditions, equation (10) is simplified as: 

02 rz

21 rzrz  

1 wT T

0
dr
dvz
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Temperature field distribution
Similar to the flow distribution model for 
the velocity field of the composite, the 
temperature field distribution can be di-
vided into two types, viz symmetric and 
asymmetric.

Symmetric distribution
According to the Fourier law of heat con-
duction, the heat flux q is:
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Substitution of the constitutive equation 
of the power-law of fluid into the energy 
balance equation in Table 2 results in:
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Combining the constitutive equation of 
the power-law of fluid with the shear 
stress expression in Table 2 results in:
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2.2 Temperature field distribution 

Similar to the flow distribution model for the velocity field of the composite, the 
temperature field distribution can be divided into two types, viz symmetric and 
asymmetric. 

2.2.1 Symmetric distribution 

According to the Fourier law of heat conduction, the heat flux q is: 

cq K T   （25） 

Substitution of the constitutive equation of the power-law of fluid into the energy 
balance equation in table 1 results in: 
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Using  equations (26), (27), (28) and (29), with simplification and 
integration, the temperature distribution function can be obtained as:  

MeltⅠ：

1

1

1

1 1 1
2 1

1 1 1

3 1
2

n
n

c

T K nr C T
r k n K




               
（30） 

    (29)

Using Equations (26), (27), (28) and 
(29), with simplification and integration, 
the temperature distribution function can 
be obtained as: 

Melt I:

 

 

2
2

11 2 2
0

2 2 0
2

( ) ( )
2

nrn
z s

r Bv v dr
K r
 

     （ 00 r B  ）   （24） 

2.2 Temperature field distribution 

Similar to the flow distribution model for the velocity field of the composite, the 
temperature field distribution can be divided into two types, viz symmetric and 
asymmetric. 

2.2.1 Symmetric distribution 

According to the Fourier law of heat conduction, the heat flux q is: 

cq K T   （25） 

Substitution of the constitutive equation of the power-law of fluid into the energy 
balance equation in table 1 results in: 

1 1
1 1

11 1 1
1 1 1 ( )

n n
cz z

rz
Kv v TK K r

r r r r r
 

             
（26） 

2 2
1 1

22 2 2
2 2 2 ( )

n n
cz z

rz
Kv v TK K r

r r r r r
 

             
（27） 

Combining the constitutive equation of the power-law of fluid   with the shear 
stress expression in table 1 results in: 

1

1
n

1
1

( )
2
r
K




 （28） 

2

1
n

2
2

( )
2
r
K




 （29） 

Using  equations (26), (27), (28) and (29), with simplification and 
integration, the temperature distribution function can be obtained as:  

MeltⅠ：

1

1

1

1 1 1
2 1

1 1 1

3 1
2

n
n

c

T K nr C T
r k n K




               
（30） 

 

 

2
2

11 2 2
0

2 2 0
2

( ) ( )
2

nrn
z s

r Bv v dr
K r
 

     （ 00 r B  ）   （24） 

2.2 Temperature field distribution 

Similar to the flow distribution model for the velocity field of the composite, the 
temperature field distribution can be divided into two types, viz symmetric and 
asymmetric. 

2.2.1 Symmetric distribution 

According to the Fourier law of heat conduction, the heat flux q is: 

cq K T   （25） 

Substitution of the constitutive equation of the power-law of fluid into the energy 
balance equation in table 1 results in: 

1 1
1 1

11 1 1
1 1 1 ( )

n n
cz z

rz
Kv v TK K r

r r r r r
 

             
（26） 

2 2
1 1

22 2 2
2 2 2 ( )

n n
cz z

rz
Kv v TK K r

r r r r r
 

             
（27） 

Combining the constitutive equation of the power-law of fluid   with the shear 
stress expression in table 1 results in: 

1

1
n

1
1

( )
2
r
K




 （28） 

2

1
n

2
2

( )
2
r
K




 （29） 

Using  equations (26), (27), (28) and (29), with simplification and 
integration, the temperature distribution function can be obtained as:  

MeltⅠ：

1

1

1

1 1 1
2 1

1 1 1

3 1
2

n
n

c

T K nr C T
r k n K




               
（30）      (30)

Melt II:

 

 

MeltⅡ：

2

2

1

2 2 2
3 2

2 2 2

3 1
2

n
n

c

T K nr C T
r k n K




               
（31） 

C2 and C3, determined by the boundary conditions, give the following 
temperature distribution functions for two kinds of polymer melts with 
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2.2.2 Asymmetric distribution 

When the flow of the two different polymer melts has an asymmetric distribution, 
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Based on the momentum conservation equation, power law equation and 
boundary conditions, the following equation results: 
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From  equations (34), (35), (36) & (37), and the boundary conditions, the 
temperature distribution function obtained after integration is: 
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From  equations (34), (35), (36) & (37), and the boundary conditions, the 
temperature distribution function obtained after integration is: 
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2.2.2 Asymmetric distribution 

When the flow of the two different polymer melts has an asymmetric distribution, 
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Based on the momentum conservation equation, power law equation and 
boundary conditions, the following equation results: 
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From  equations (34), (35), (36) & (37), and the boundary conditions, the 
temperature distribution function obtained after integration is: 
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and the boundary conditions, the temper-
ature distribution function obtained after 
integration is:
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3. Simulation calculation 

In order to verify the rationality and reliability of the above mathematical model of 
velocity field distribution, a melt with poor compatibility of the two kinds of polymer 
melts was used for verification. In this paper, the widely used polymer melts 
polyglycol terephthalate (PET) and polyamide (PA6) were used for juxtaposing to 
solve the velocity field distribution numerically. A geometric model was established,  
shown in Figure 4. 
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	 Simulation calculation
In order to verify the rationality and reli-
ability of the above mathematical model 
of velocity field distribution, a melt with 
poor compatibility of the two kinds of 
polymer melts was used for verification. 
In this paper, the widely used polymer 
melts polyglycol terephthalate (PET) and 
polyamide (PA6) were used for juxtapos-
ing to solve the velocity field distribution 
numerically. A geometric model was es-
tablished, shown in Figure 4.

In this paper, the velocity field distri-
bution function is based on Euler’s de-
scription method, which describes the 
velocity distribution point by point at any 
specified time and deduces the mathe-
matical model by using the momentum 
equation. Based on the staggered grid fi-
nite volume method [11], the momentum 
equation was first discretised. According 
to the discretised momentum equation, 
the Fortran programming language was 
used to solve the velocity field distribu-
tion functions of two kinds of polymer 
melts combined with a simple algorithm.
Specifically, S1 solves the momentum 
equation, and the velocity field under the 
specified viscosity field and temperature 
field are obtained. In S2 the viscosity 
field is resolved from the specified tem-
perature field and known shear rate field. 
S3 repeats S1 and S2 until the velocity 
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Table 2. Material parameters [11].

Material parameters PA6 PET
Nonnewtonian exponent n 0.75 0.66
Relaxation time λ, s-1 0.02 0.07
Zero shear viscosity η0, (Pa·s)-1 750 210
Density ρ, kg/m3 973 1268

Figure 4. Geometric model of parallel com-
pound extrusion.
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field, viscosity field and pressure field 
converge.

The convergence criterion is: 

 

 

specified viscosity field and temperature field are obtained. In S2 the viscosity field is 
resolved from the specified temperature field and  known shear rate field. S3 repeats 
S1 and S2 until the velocity field, viscosity field and pressure field converge. 
The convergence criterion is:  
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Where     is the number of iterations, i the unknown quantity, and   is the 
collecting tolerance difference that controls the calculation accuracy. In this paper,    
is calculated at 10-5，and the calculation accuracy and time are reasonable.  

The boundary conditions were determined by the parameters of two kinds of 
polymer melt materials and the spinning process, shown in Table 1. [11] 

Table 1 Material parameters[11] 

Material parameters PA6 PET 

Nonnewtonian exponent  n      0.75 0.66 

Relaxation time          0.02 0.07 

Zero shear viscosity     （    ）
  

  750 210 

Density   (Kg/m3) 973 1268 

There was no slip flow on the wall surface of the micro hole, and the wall 

temperature was set as 288℃；the melt inlet flow is             （   

 ）(including     for PA6 inlet flow,     for PET inlet flow), with a flow ratio of 1:1，

(including:     for PA6 inlet flow,     for PET inlet flow)and 1.8 mm，at an inlet 
angle of 75°。Calculation results of the velocity field at the entrance and exit of the 
micropores are shown in Fig. 5. 

   (40)
 
Where n' is the number of iterations, i the 
unknown quantity, and εu is the collect-
ing tolerance difference that controls the 
calculation accuracy. In this paper, εu is 
calculated at 10-5, and the calculation ac-
curacy and time are reasonable. 

The boundary conditions were deter-
mined by the parameters of two kinds of 
polymer melt materials and the spinning 
process, shown in Table 2. [11]

There was no slip flow on the wall sur-
face of the micro hole, and the wall tem-
perature was set as 288 °C; the melt inlet 
flow is QA = QB = 2 × 10-8 (m3/s) (in-
cluding Q A for PA6 inlet flow, Q B for 
PET inlet flow), with a flow ratio of 1:1, 
(including: Q A for PA6 inlet flow, Q B 
for PET inlet flow) and 1.8 mm, at an in-
let angle of 75 °C. Calculation results of 
the velocity field at the entrance and exit 
of the micropores are shown in Figure 5.

Figure 5 shows that the inlet flow phase 
into the jet hole happens at the same time, 
The melt velocity distributions of PET 
and PA6, two kinds of polymer, are basi-
cally the same, which is mainly due to the 
two different kinds of melt viscosity after 
the two melt composites, With the PA6 
melt viscosity, there is less friction and 
the speed of the melt is bigger, therefore, 
there is a maximum speed of the com-

posite melt in PA6 melt at the exit side. 
The locations of the PA6 axis position, 
the maximum speed of 0.423 m/s. It is 
consistent with the conclusion in litera-
ture [12-13].

	 Conclusions
The paper is based on two kinds of po-
lymerisation kinetics and describes 
a melt control equation established for 
two concrete symmetrical and complete 
channels of asymmetric polymer melt 
flow. For complex melts with symmetric 
or asymmetric distribution of the veloci-
ty field in the tunnel, the above equations 
are derived for the velocity and temper-
ature field distribution function. Based 
on polymer material parameters, bound-
ary conditions, the iterative algorithm of 
the polymer melt velocity and temper-
ature distribution, theoretical guidance 
on technological parameters and their 
distribution for the composite profiled 
fibre forming interface may be extended. 
The velocity and temperature distribu-
tion curve, structural parameters of the 
composite fibre spinning components, 
and forming process parameters can be 
calculated to lay a theoretical basis for 
design.
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Fig.5 Calculation results of the velocity field at the entrance and exit of PET and PA6 

micropores 

Figure 5 shows that the inlet flow phase into the jet hole happens at the same 
time, The melt velocity distributions of PET and PA6, two kinds of polymer, are 
basically the same, which is mainly due to the two different kinds of melt viscosity 
after the two melt composites, With the PA6 melt viscosity, there is less friction and 
the speed of the melt is bigger, therefore, there is a maximum speed of the composite 
melt in PA6 melt at the exit side. The locations of the PA6 axis position,  the 
maximum speed of 0.423 m/s, and literature [12-13] theory gives the viscosity of 
package???. 

4 Conclusion  

The paper is based on two kinds of polymerisation kinetics and describes a melt 
control equation esablished for two concrete symmetrical and complete channels of 
asymmetric polymer melt flow. For complex melts with  symmetric or asymmetric 
distribution of the velocity field in the tunnel, the above equations are derived for the 
velocity and temperature field distribution function. Based on polymer material 
parameters, boundary conditions, the iterative algorithm of the polymer melt velocity 
and temperature distribution, theoretical guidance on technological parameters and 
their distribution for the composite profiled fibre forming interface may be extended. 
The velocity and temperature distribution curve, structural parameters of the 
composite fibre spinning components, and forming process parameters can be 
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