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Abstract. In 1998, H. Broersma and H. Tuinstra proved that: Given a connected graph
G with n ≥ 3 vertices, if d(u) + d(v) ≥ n − k + 1 for all non-adjacent vertices u and v
of G (k ≥ 1), then G has a spanning tree with at most k leaves. In this paper, we generalize
this result by using implicit degree sum condition of t (2 ≤ t ≤ k) independent vertices and
we prove what follows: Let G be a connected graph on n ≥ 3 vertices and k ≥ 2 be an integer.
If the implicit degree sum of any t independent vertices is at least t(n−k)

2 + 1 for (k ≥ t ≥ 2),
then G has a spanning tree with at most k leaves.
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1. INTRODUCTION

In this paper, we consider only undirected, finite and simple graphs. Notation and
terminology not defined here can be found in [2]. Let G = (V (G), E(G)) be a graph
with vertex set V (G) and edge set E(G). Let H be a subgraph of G. For a vertex
u ∈ V (G), we define the neighborhood of u in H, denoted by NH(u), the set of vertices
in H which are adjacent to u in G. The degree of u in H, denoted by dH(u), is |NH(u)|.
Let PH [u, v] denote a path between u and v in H and we call u and v end-vertices of
PH [u, v]. When H = G, we use N(u), d(u) and P [u, v] in place of NG(u), dG(u) and
PG[u, v], respectively.

Given a path P in G with two end-vertices a and b, let one of the end-vertices,
say a, be the source vertex, the other end-vertex b, be the sink vertex. For a vertex
x on P , we denote x− the neighbor of x on P which is closer to the source vertex
a and denote the other neighbor of x on P by x+. We set x+(h+1) = (x+h)+ and
x−(h+1) = (x−h)− for h ≥ 1. And for any I ⊆ V (P ), let I− = {x ∈ V (P ) : x+ ∈ I}
and I+ = {x ∈ V (P ) : x− ∈ I}. For two vertices x, y ∈ V (P ), P [x, y] or xPy denotes
the sub-path of P from x to y.
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An independent set of a graph G is a subset of vertices such that no two ver-
tices in the subset induce an edge of G. The cardinality of a maximum indepen-
dent set in a graph G is called the independence number of G, denoted by α(G).
For an integer t ≥ 1, if t ≥ α(G), then we denote

σt(G) = min
{ t∑

i=1
d(ui) : {u1, u2, . . . , ut} is an independent set of G

}
,

otherwise σt(G) = +∞.
A leaf of a tree T is a vertex of T with degree one. A natural generalization of

hamiltonian paths are spanning trees with small numbers of leaves. In 1998, Broersma
and Tuinstra [3] proved the following theorem.

Theorem 1.1 ([3]). Let G be a connected graph on n ≥ 3 vertices. If d(u) + d(v) ≥
n− k + 1 (k ≥ 2) for every pair of non-adjacent vertices u and v in G, then G has
a spanning tree with at most k leaves.

In 1989, Zhu, Li and Deng [12] found that though some vertices may have small
degrees, we can use some large degree vertices to replace small degree vertices in the
right position considered in the proofs, so that we may construct a longer cycle. This
idea leads to the definition of implicit-degree. Since then, many results on cycles and
paths using degree conditions have been extended by using implicit-degree conditions.
There are two kinds of implicit-degrees of vertices introduced in [12]. Here we introduced
these two definitions.

For any vertex u of G, denote N1(u) = N(u) = {v ∈ V (G) : uv ∈ E(G)} and
N2(u) = {v ∈ V (G) : d(u, v) = 2}. Set M2 = max{d(v) : v ∈ N2(u)} and m2 =
min{d(v) : v ∈ N2(u)}. Assume that d(u) = l + 1 and d1 ≤ d2 ≤ . . . ≤ dl ≤ dl+1 ≤ . . .
is the degree sequence of the vertices in N1(u)∪N2(u). If N2(u) 6= ∅ and l ≥ 1, the two
kinds of implicit-degrees of u, denoted by id1(u) and id2(u), respectively, are defined
by

id1(u) =
{

max{dl+1, l + 1}, if dl+1 > M2,

max{dl, l + 1}, otherwise

and

id2(u) =
{

max{m2, l + 1}, if m2 ≥ dl,

id1(u), otherwise.

If N2(u) = ∅ or l < 1, then define id1(u) = id2(u) = d(u). By the above definitions,
it is easy to check that id2(u) ≥ id1(u) ≥ d(u).

Similar to the degree sum of independent vertices of a graph G, we can consider the
implicit-degree sum of independent vertices of G. In [12], the authors gave a sufficient
condition for a 2-connected graph to be hamiltonian by considering the implicit-degree
sum of two non-adjacent vertices.
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Theorem 1.2 ([12]). Let G be a 2-connected graph on n ≥ 3 vertices. If for each pair
of non-adjacent vertices u and v, id2(u) + id2(v) ≥ n, then G is hamiltonian.

The introduce of implicit-degree is very important, since many classic results by
considering degree conditions in graph theory can be generalized. We just give one
example to show this. Fan’s theorem [6] can be easily obtained from Theorem 1.2 and
the authors in [12] gave a simple proof of this.

Coroallary 1.3 ([6]). Let G be a 2-connected graph on n ≥ 3 vertices. If
max{d(u), d(v)} ≥ n/2 for each pair of vertices u and v with d(u, v) = 2, then
G is hamiltonian.

For more results using implicit-degree conditions, we refer to [4,5] and [9]. Note
that the degree condition in Theorem 1.1 can be seen as σ2(G) ≥ 2(n−k)

2 + 1. In this
paper, using the first kind of implicit-degree of vertices, we will extend Theorem 1.1
by using the condition of implicit-degree sum of t independent vertices. Throughout
this work, we will always use id(u) to denote id1(u) and

iσt(G) = min
{ t∑

i=1
id(ui) : {u1, u2, . . . , ut} is an independent set of G

}

if t ≥ α(G), otherwise iσt(G) = +∞. We will show that the following result holds.

Theorem 1.4. Let G be a connected graph on n ≥ 3 vertices and k ≥ 2 be an integer.
If iσt(G) ≥ t(n−k)

2 + 1 (k ≥ t ≥ 2), then G has a spanning tree with at most k leaves.

Remark 1.5. This result is sharp, we can easily check it from the graph Km,m+k.
We can see that for 2 ≤ t ≤ k,

iσt(Km,m+k) = tm = t(|V (Km,m+k)| − k)
2 ,

but any spanning tree in Km,m+k has at least k + 1 leaves.

The paper is organized as follows: in Section 2, we will give some preliminaries for
the proof of Theorem 1.4; in Section 3, we will give the proof of Theorem 1.4.

2. PRELIMINARIES

In this section we will give some preliminaries for the proof of Theorem 1.4. First,
we give a lemma on the property of σt.

Lemma 2.1 ([7]). For any graph G and t ≥ 1,

σt+1(G)
t+ 1 ≥ σt(G)

t
.

Then, we give a lemma on the upper bound of degree sum of two vertices on a given
path.



504 Junqing Cai, Evelyne Flandrin, Hao Li, and Qiang Sun

Lemma 2.2. Let P be a path with two end-vertices a and b and let b be the sink
vertex of P . For any two vertices x, y not on P , if NP (x)− ∩ NP (y) = ∅, then
dP (x) + dP (y) ≤ |V (P )|+ 1.

Proof. Since NP (x)− ∩NP (y) = ∅, we have NP (x)− ∪NP (y) ⊆ V (P ) and |NP (x)−|+
|NP (y)| ≤ |V (P )|. Note that there is no vertex a− and x can be adjacent to a,
|NP (x)| ≤ |NP (x)−|+ 1. Thus

dP (x) + dP (y) = |NP (x)|+ |NP (y)| ≤ |V (P )|+ 1.

3. PROOF OF THEOREM 1.4

In this section we will prove Theorem 1.4 by contradiction. Let G be a graph satisfying
the condition of Theorem 1.4 and suppose to the contrary that any spanning tree of G
has at least k + 1 leaves.

Let T denote the set of spanning trees of G. We choose a spanning tree T ∈ T
satisfying the followings conditions:

(1) the number of leaves in T is as small as possible; let X be the set of leaves of T ,
and

(2)
∑

v∈X d(v) is as large as possible, subject to (1).

Claim 3.1. X is an independent set of G.

Proof. Denote X = {v1, v2, . . . , vl}, l ≥ k + 1 ≥ 3. Suppose to the contrary that there
exist two vertices vi, vj such that vivj ∈ E(G). Since l ≥ 3, there must exist a vertex
of T with degree at least 3 in T . Let u be the unique vertex which has at least 3
neighbors on T and is closest to vj on T . Denote the path vjTu = vju1 . . . usu. Let T ′
be the spanning tree obtained from T by deleting the edge usu and adding the edge
vivj . It is easy to check that vi, vj are not leaves of T ′ and us is a new leaf of T ′. Thus
T ′ has at least one leaf less than that of T , a contradiction to the choice of T .

Claim 3.2. For each vertex vj in X, we have id(vj) = d(vj).

Proof. Suppose to the contrary that there exists a vertex vj ∈ X such that
id(vj) > d(vj). Denote d(vj) = s and N(vj) = {x1, x2, . . . , xs}. Let d1 ≤ d2 ≤ . . . ≤
ds−1 ≤ ds ≤ . . . be the degree sequence of vertices in N1(vj) ∪ N2(vj). Note that
s ≥ 2, otherwise id(vj) = d(vj), a contradiction. Without loss of generality, we assume
that x1 is the neighbor of vj on T . For 2 ≤ i ≤ s, we denote x′i be the neighbor of
xi on T which is closet to vj . Since X is an independent set, there exists a vertex
x′′m ∈ T \{x′2, x′3, . . . , x′s} such that x′′m is adjacent to xm on T and x′′mvj /∈ E(G), that
means x′′m ∈ N2(vj).

By the definition of implicit-degree of vj , id(vj) = ds−1 or id(vj) = ds. Thus we
will continue the proof by discussing these two cases.
Case 1. id(vj) = ds−1.
Since {x′2, x′3, . . . , x′s} ⊆ N1(vj) ∪ N2(vj), d(x′2), d(x′3), . . . , d(x′s) are in the de-
gree sequence of vertices in N1(vj) ∪ N2(vj). Thus there must exist a vertex
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x′p ∈ {x′2, x′3, . . . , x′s} such that d(x′p) ≥ ds−1 = id(vj) > d(vj). We can claim that
x′p is a vertex of degree 2 on the spanning tree T . Otherwise, we can obtain a new
spanning tree T ′ from T by deleting the edge xpx

′
p and adding the edge vjxp. Note

that vj is not a leaf of T ′ and x′p is of degree at least 2 in T ′. Thus T ′ has less leaves
than T , a contradiction. Now, denote by T ∗ the spanning tree obtained from T by
deleting the edge xpx

′
p and adding the edge vjxp. Then vj is not a leaf on T ∗ while

x′p is a new leaf. Let X∗ denote the set of leaves of T ∗, then |X∗| = |X|. However,
∑

u∈X∗

d(u)−
∑

w∈X

d(w) = d(x′p)− d(vj) ≥ id(vj)− d(vj) > 0,

a contradiction to the choice of T .
Case 2. id(vj) = ds.
Note that by the definition of id(vj), ds > M2, here M2 = max{d(u) : u ∈ N2(vj)}.
Since x′′m ∈ N2(vj), we can get that d(x′′m) ≤M2 < ds = id(vj). Since x′′m, x′2, x′3, . . . , x′s
are s vertices in N1(vj) ∪N2(vj), there must exist a vertex, say x′p ∈ {x′2, x′3, . . . , x′s}
such that d(x′p) ≥ ds = id(vj) > d(vj). Similarly as in Case 1, we can obtain a new
spanning tree T ∗ from T by deleting the edge x′pxp and adding the edge vjxp. Then
vj is not a leaf in T ∗ while x′p is a new leaf of T ∗. Let X∗ denote the set of leaves
of T ∗, then |X∗| = |X|. However,

∑

u∈X∗

d(u)−
∑

w∈X

d(w) = d(x′p)− d(vj) ≥ id(vj)− d(vj) > 0,

a contradiction to the choice of T .
This completes the proof of Claim 3.2.

Now we calculate degree sum in G of any two leaves vi, vj of the spanning tree T .
Denote by Pij the path connecting vi and vj on the spanning tree T .
Claim 3.3. NPij (vi)− ∩NPij (vj) = ∅.
Proof. Suppose to the contrary that NPij

(vi)− ∩ NPij
(vj) 6= ∅ and assume v ∈

NPij
(vi)− ∩ NPij

(vj). Since l ≥ 3 and T is connected, there must exist a vertex u
on the sub-path v+

i Pijv
−
j such that dT (u) ≥ 3. Consider the new spanning tree T ′

obtained from T by adding the edges viv
+ and vjv and deleting the edges vv− and uu+

if u ∈ V (viPijv) or uu− if u ∈ V (vPijvj). That is T ′ = (T \ {vv+, uu+})∪{viv
+, vjv}

if u ∈ V (viPijv) or T ′ = (T \ {vv+, uu−})∪ {viv
+, vjv} if u ∈ V (vPijvj). It is easy to

check that vi, vj are not leaves of T ′ and u+ is the new leaf if u ∈ V (viPijv) or u− is
the new leaf if u ∈ V (vPijvj). Thus T ′ has at least one leaf less than that of T . This
is contrary to the choice of T .

Set P ′ij = Pij \ {vi, vj}. Then by Claim 3.3 and Lemma 2.2, we have

dP ′
ij

(vi) + dP ′
ij

(vj) ≤ |P ′ij |+ 1 = |Pij | − 1.

By Claim 3.1, vivj /∈ E(G). Therefore, we can get that

dPij
(vi) + dPij

(vj) = dP ′
ij

(vi) + dP ′
ij

(vj) ≤ |Pij | − 1. (3.1)
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Next we consider the vertices in T − V (Pij). Since T is a spanning tree and
Pij is a path of T , we can decompose each component of T − V (Pij) into paths
in the following ways: each time when the component, say C, is not a path, we take
a path P ′ as long as possible in C such that one end-vertex of P ′ is adjacent to a vertex
of Pij in T and continue this process in C − V (P ′). Assume we decompose all the
components of T − V (Pij) into paths P = {P1, P2, . . .}.

Now, we calculate the degree sum of vi and vj on each path Ps. By the choice of
each Ps, there must be one end-vertex of Ps, say vs, is a leaf of T . Thus the end-vertex
vs is not adjacent to vi or vj .
Claim 3.4. The other end-vertex of Ps, denoted by xs, is not adjacent to vi or vj.
Proof. Suppose to the contrary that xs is adjacent to vi or vj , without of loss generality,
say vixs ∈ E(G). Denote by x′s the vertex of degree at least 3 which is adjacent to xs

on the spanning tree T . By deleting the edge x′sxs and adding the edge vixs, we can
obtain a new spanning tree which has less leaves than T , a contradiction.

By using the similar method as in Claim 3.3, we can get thatNPs
(vi)−∩NPs

(vj) = ∅.
Therefore, by Lemma 2.2, we can prove that

dPs\{vs,xs}(vi) + dPs\{vs,xs}(vj) ≤ |Ps \ {vs, xs}|+ 1 = |Ps| − 1.

Thus by Claim 3.4, we can get that

dPs
(vi) + dPs

(vj) = dPs\{vs,xs}(vi) + dPs\{vs,xs}(vj) ≤ |Ps| − 1. (3.2)

Since T has at least l leaves and Pij has two leaves in P, there are at least
l − 2 ≥ k − 1 paths. Thus by inequation (3.1) and inequation (3.2), we have

d(vi) + d(vj) = dPij
(vi) + dPij

(vj) +
∑

Ps∈P
dPs

(vi) + dPs
(vj)

≤ |Pij | − 1 +
∑

Ps∈P
(|Ps| − 1) ≤ n− k.

Therefore, we can get that

d(v1) + d(vi) ≤ n− k, i = 2, 3, . . . , l

and
d(vi) + d(vi+1) ≤ n− k, i = 1, 2, . . . , l − 1.

Thus, for 2 ≤ t ≤ k, we have
t∑

i=1
d(vi) ≤

t(n− k)
2 .

By Claim 3.2,
∑t

i=1 id(vi) =
∑t

i=1 d(vi), we have

iσt(G) ≤
t∑

i=1
id(vi) =

t∑

i=1
d(vi) ≤

t(n− k)
2 ,

a contradiction. This completes the proof of Theorem 1.4.
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