Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Typcial monitoring procedures for diesel particulate matter (DPM) in mines include the collection of filter samples using particle size selectors. The size selectors are meant to separate the DPM, which is generally considered to occur in the submicron range (i.e.,<0.8 μm), from larger dust particles that could present analytical interferences. However, previous studies have demonstrated that this approach can sometimes result in undersampling, therefore, excluding significant fractions of the DPM mass. The excluded fraction may represent oversized DPM particles, but another possibility is that submicron DPM attaches to supramicron dust particles such that it is effectively oversized. To gain insights into this possibility, a field study was conducted in an underground stone mine. Submicron, respirable, and total airborne particulate filter samples were collected in three locations to determine elemental carbon (EC) and total carbon (TC), which are commonly used as analytical surrogates for DPM. Concurrent with the collection of the filter samples, a low-flow sampler with an electrostatic precipitator was also used to collect airborne particulates onto 400-mesh copper grids for analysis by transmission electron microscope (TEM). Results indicated that, while typical submicron sampling did account for the majority of DPM mass in the study mine, DPM-dust attachment can indeed occur. The effect of exposure to such attached particulates has not been widely investigated.
Wydawca
Czasopismo
Rocznik
Tom
Strony
100--108
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
- Virginia Tech, Department of Mining and Minerals Engineering, Blacksburg, VA, 24060, USA
autor
- Virginia Tech, Department of Mining and Minerals Engineering, Blacksburg, VA, 24060, USA
autor
- CDC/NIOSH Office of Mine Safety and Health Research (OMSHR), Pittsburgh, PA, 15236, USA
Bibliografia
- 1. Abdul-Khalek, I. S., Kittelson, D. B., Graskow, B. R., Wei, Q., & Bear, F. (1998). Diesel exhaust particle size: Measurement issues and trends. SAE technical paper. https://doi.org/10.4271/980525.
- 2. Birch, M. E. (2016). Monitoring of diesel particulate exhaust in the workplace. NIOSH Manual of Analytical Methods (NMAM) (5th ed.). . Retrieved September 1, 2018 from https://www.cdc.gov/niosh/docs/2014-151/pdfs/chapters/chapter-dl.pdf.
- 3. Bukowiecki, N., Kittelson, D. B., Watts, W. F., Burtscher, H., Weingartner, E., & Baltensperger, U. (2002). Real-time characterization of ultrafine and accumulation mode particles in ambient combustion aerosols. Journal of Aerosol Science, 33(8), 1139-1154. https://doi.org/10.1016/S0021-8502(02)00063-0.
- 4. Cantrell, B. K., & Rubow, K. L. (1991). Development of personal diesel aerosol sampler design and performance criteria. Mining Engineering, 43(2), 232-236.
- 5. Cantrell, B. K., & Watts, W. F. (1997). Diesel exhaust aerosol: Review of occupational exposure. Applied Occupational and Environmental Hygiene, 12(12), 1019-1027. https://doi.org/10.1080/1047322X.1997.10390643.
- 6. Cauda, E., Miller, A., Stabile, L., & Buonanno, G. (2014). Characterizing the exposure of miners to mixed aerosols. Proceedings of the international conference on atmospheric dust. Taranto, Italy, June 1-6, 2014, (pp. x-x). City: Publisher.
- 7. Cauda, E., Sheehan, M., Gussman, R., Kenny, L., & Volkwein, J. (2014). An evaluation of sharp cut cyclones for sampling diesel particulate matter aerosol in the presence of respirable dust. Annals of Occupational Hygiene, 58(8), 995-1005. https://doi.org/10.1093/annhyg/meu045.
- 8. CDC (1984). Centers for Disease Control. Chronic inhalation exposure to coal dust and/or diesel exhaust: Effects on the alveolar macrophages of rats. Morbidity and Mortality Weekly Report, 33(7), 101-102.
- 9. Chou, C. C.-K., Chen, T.-K., Huang, S.-H., & Liu, S. C. (2003). Radiative absorption capability of asian dust with black carbon contamination. Geophysical Research Letters, 30(12), 1616. https://doi.org/10.1029/2003GL017076.
- 10. Gaillard, S., Sarver, E., & Cauda, E. (2018). Impact of aging on performance of impactor and sharp-cut cyclone size selectors for DPM sampling. Mining Engineering, 70(8), 43-49. https://doi.org/10.19150/me.8428.
- 11. Ishiguro, T., Takatori, Y., & Akihama, K. (1997). Microstructure of diesel soot particles probed by electron microscopy: First observation of inner core and outer shell. Combustion and Flame, 108(1-2), 231-234. https://doi.org/10.1016/S0010-2180(96)00206-4.
- 12. Karagianes, M., Palmer, R., & Busch, R. (1981). Effects of inhaled diesel emissions and coal-dust in rats. American Industrial Hygiene Association Journal, 42(5), 382-391.
- 13. Kissell, F., & Sacks, H. (2002). Inaccuracy of area sampling for measuring the dust exposure of mining machine operators in coal mines. Mining Engineering, 54(2), 33-39.
- 14. Kittelson, D. (1998). Engines and nanoparticles: A review. Journal of Aerosol Science, 29(5-6), 575-588. https://doi.org/10.1016/S0021-8502(97)10037-4.
- 15. Lee, J., Goto, Y., & Odaka, M. (2002). Measurement of the diesel exhaust particle reduction effect and particle size distribution in a transient cycle mode with an installed diesel particulate filter (DPF). SAE Transactions, 111, 370-376. https://doi.org/10.4271/2002-01-1005.
- 16. Maximilien, D., Couture, C., Njanga, P.-E., Neesham-Grenon, E., Lachapelle, G., Coulombe, H., et al. (2017). Diesel engine exhaust exposures in two underground mines. International Journal of Mining Science and Technology, 267(4), 641-645. https://doi.org/10.1016/j.ijmst.2017.05.011.
- 17. Miller, A., Frey, G., King, G., & Sunderman, C. (2010). A handheld electrostatic precipitator for sampling airborne particles and nanoparticles. Aerosol Science and Technology, 44(6), 417-427. https://doi.org/10.1080/02786821003692063.
- 18. MSHA (2008). Mine Safety and Health Administration. Diesel particulate matter exposure of underground metal and nonmetal miners. Rules and Regulations, Federal Register 30 CFR Part 57, 73(98), 29058-29060. Retrieved September 1, 2018 from https://www. govinfo.gov/content/pkg/FR-2008-05-20/pdf/E8-11329.pdf.
- 19. NASEM (2018). National academies of sciences, engineering and medicine. Monitoring and sampling approaches to assess underground coal mine dust exposuresWashington, DC: The National Academies Press https://doi.org/10.17226/25111.
- 20. NIOSH (2016). National Institute of occupational safety and health. Limestone. NIOSH pocket Guide to chemical hazards. Retrieved September 1, 2018 from https://www.cdc.gov/niosh/npg/npgd0369.html.
- 21. Noll, J. D., Bugarski, A. D., Patts, L. D., Mischler, S. E., & McWilliams, L. (2007). Relationship between elemental carbon, total carbon, and diesel particulate matter in several underground metal/non-metal mines. Environmental Science and Technology, 41(3), 710-716. https://doi.org/10.1021/es061556a.
- 22. Noll, J. D., Janisko, S., & Mischler, S. E. (2013). Real-time diesel particulate monitor for underground mines. Analytical Methods, 5(12), 2954-2963. https://doi.org/10.1039/C3AY40083B.
- 23. Noll, J. D., Mischler, S. E., Schnakenberg, G. H., Jr., & Bugarski, A. D. (2006). Measuring diesel particulate matter in underground mines using sub micron elemental carbon as a surrogate. Proceedings of the 11th US/north American mine ventilation symposium, 5-7 June 2006, Pennsylvania, USA (pp. 105-110). London: Taylor & Francis.
- 24. Noll, J. D., Timko, R. J., McWilliams, L., Hall, P., & Haney, R. (2005). Sampling results of the improved SKC diesel particulate matter cassette. Journal of Occupational and Environmental Hygiene, 2(1), 29-37. https://doi.org/10.1080/15459620590900320.
- 25. Pietikainen, M., Oravisjarvi, K., Rautio, A., Voutilainen, A., Ruuskanen, J., & Keiski, R. L. (2009). Exposure assessment of particulates of diesel and natural gas fueled buses in silico. The Science of the Total Environment, 408, 163-168.
- 26. Vermeulen, R., Coble, J. B., Yereb, D., Lubin, J. H., Blair, A., Portengen, L., et al. (2010). The diesel exhaust in miners study: III. Interrelations between respirable elemental carbon and gaseous and particulate components of diesel exhaust derived from area sampling in underground non-metal mining facilities. Annals of Occupational Hygiene, 54(7), 762-773. https://doi.org/10.1093/annhyg/meq023.
- 27. Vinson, R., Volkwein, J., & McWilliams, L. (2007). Determining the spatial variability of personal sampler inlet locations. Journal of Occupational and Environmental Hygiene, 4(9), 708-714. https://doi.org/10.1080/15459620701540618.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59d0c5f2-d07e-4392-a434-7dd9f7a0b194