Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is a kind of insensitive high explosive that can be used as an energetic material in nuclear weapon and space applications. In this work, we have studied the effect of aging on the properties of TATB from a 20 year old lot that had been in direct contact with casing and natural environment conditions. The kinetics was studied using the temperature at the maximum reaction rate (peak) and isoconversional methods from TGA and DTA data obtained at five heating rates under a nitrogen atmosphere. The properties investigated for thermal stability indicate that there is no change in the properties during prolonged exposure in natural environment conditions. The activation energy calculated by the Kissinger method was 179.9 kJ·mol−1 by DTG and the 176.9 kJ·mol−1 by DTA. The experimental results of kinetic analysis obtained by isoconversional methods are in good agreement and very close to each other. In the analysis of reaction mechanisms, the reaction models could be probably best described by a surface contraction mechanism using the Coats-Redfern and Criado methods. The thermodynamic parameters such as Gibbs free energy, enthalpy and entropy of activation were also investigated. The self-accelerating decomposition temperature (TSADT) and critical temperature for thermal explosion (Tb) were also calculated.
Rocznik
Tom
Strony
258--282
Opis fizyczny
Bibliogr. 40 poz., rys., tab
Twórcy
autor
- Terminal Ballistics Research Laboratory, Explosive Group, Sector 30, Chandigarh, India
autor
- Terminal Ballistics Research Laboratory, Explosive Group, Sector 30, Chandigarh, India
autor
- Terminal Ballistics Research Laboratory, Explosive Group, Sector 30, Chandigarh, India
autor
- Terminal Ballistics Research Laboratory, Explosive Group, Sector 30, Chandigarh, India
Bibliografia
- [1] Rice, S. F.; Simpson, R. L. The Unusual Stability of TATB: A Review of the Scientific Literature. Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-LR-103683, 1990.
- [2] Dobratz, B. M. The Insensitive High Explosive Triaminotrinitrobenzene (TATB):Development and Characterization − 1888 to 1994. Report LA-13014-H, Los Alamos Scientific Laboratory, NM, Los Alamos 1995.
- [3] Voreck, W. E.; Brooks, J. E.; Eberhardt, J. R.; Rezaie, H. A. Shaped Charge for a Perforating Gun Having a Main Body of Explosive Including TATB and a Sensitive Primer. Patent US 5597974, 1997.
- [4] Nouguez, B.; Mahe, B.; Vignaud, P. O. Cast PBX Related Technologies for IM Shells and Warheads. Sci. Technol. Energ. Mater. 2009, 70: 135-139.
- [5] Borman, S. Advanced Energetic Materials Emerge for Military and Space Applications. J. Chem. Eng. News 1994, 72(3): 18-22.
- [6] Adler, J. Thermal Explosion Theory with Arrhenius Kinetics: Media. Proc. R. Soc. London A 1991, 329-335.
- [7] Ajadi, S. O.; Nave, O. Approximate Critical Conditions in Thermal Explosion Theory for a Two-Steps Kinetic Model. J. Math. Chem. 2010, 47: 790-807.
- [8] Weifeia, Y.; Tonglaia, Z.; Junb, Z.; Yigangb, H.; Gangb, L.; Chaob, H.; Jinshanb, L.; Huib, H. Effect of Microwave Irradiation on TATB Explosive (II): Temperature Response and other Risk. J. Hazard. Mater. 2010, 173: 249-252.
- [9] Foltz, M. F.; Ornellas, D. L.; Pagoria, P. F.; Mitchell, A. R. Recrystallization and Solubility of 1,3,5-Triamino-2,4,6-Trinitrobenzene in Dimethyl Sulfoxide. J. Mater. Sci. 1996, 31: 1893-1901.
- [10] Britt, A. D.; Moniz, W. B.; Chingas, G. C.; Moore, D. W.; Heller, C. A.; Ko, C. L. Free Radicals of TATB. Propellants Explos. Pyrotech. 1981, 6: 94-95.
- [11] Manaa, M. R.; Schmidt, R. D.; Overturf, G. E.; Watkins, B. E.; Fried, L. E.; Kolb, J. R. Towards Unraveling the Photochemistry of TATB. Thermochim. Acta 2002, 384: 85-90.
- [12] Hoffman, D. M.; Matthews, F. M.; Pruneda, C. O. Dynamic Mechanical and Thermal Analysis of Crystallinity Development in Kel-F 800 and TATB/Kel-F 800 Plastic Bonded Explosives. Part I. Kel-F 800. Thermochim. Acta 1989, 156: 365-72.
- [13] Singh, A.; Soni, P. K.; Singh, M.; Srivastava, A. Thermal Degradation, Kinetics and Correlation Models of Poly(Vinylidene Fluoride-Chlorotrifluoroethylene) Copolymers. Thermochim. Acta 2012, 548: 88-92.
- [14] Singh, A.; Soni, P. K.; Shekharam, T.; Srivastava, A. A Study On Thermal Behaviour of a Poly(VDF-CTFE) Copolymers Binder for High Energy Materials. J. Appl. Polym. Sci. 2013, 127(3): 1751-1757.
- [15] Singh, A.; Sharma, T. C.; Kumar, M.; Narang, J. K.; Kishore, P.; Srivastava, A. Thermal Decomposition and Kinetics of Plastic Bonded Explosives Based on Mixture of HMX and TATB with Polymer Matrices. Def. Tech. 2016; doi.org/10.1016/j.dt.2016.11.005.
- [16] Flynn, J. H.; Wall, L. A General Treatment of the Thermogravimetry of Polymers. J. Res. Natl. Bur. Std. A Phys. Chem. 1966, 70: 487-523.
- [17] Ozawa, T. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn. 1965, 38: 1881-1886.
- [18] Akahira, T.; Sunose, T. Method of Determining Activation Deterioration Constant of Electrical Insulating Materials. Res. Report Chiba Inst. Technol. (Sci. Technol.) 1971, 16: 22-31.
- [19] Kissinger, H. E. Reaction Kinetics in Differential. J. Therm. Anal. Chem. 1957, 29: 1702-1706.
- [20] Friedman, H. Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry: Application to a Phenolic Plastic. J. Polym. Sci. Part C 1964, 6: 183-195.
- [21] Criado, J. M.; Perez-Maqueda, L. A.; Gotor-Malek, F. J. J.; Koga, N. A Unified Theory for the Kinetic Analysis of Solid State Reactions under any Thermal Pathway. J. Therm. Anal. Calorim. 2003, 72: 901-906.
- [22] Coats, A. W.; Redfern, J. P. Kinetic Parameters from Thermogravimetric Data. Nature (London) 1964, 201: 68-69.
- [23] Perez-Maqueda, L. A.; Criado, J. M.; Gotor, F. J.; Malek, J. Advantages of Combined Kinetic Analysis of Experimental Data Obtained Under any Heating Profile. J. Phys. Chem. A 2002; 106: 2862-2868.
- [24] Paterson, W. L. Computation of the Exponential Trap Population Integral of Glow Curve Theory. J. Comput. Phys. 1971, 7(1): 187-190.
- [25] Zeman, S. The Thermoanalytical Study of Some Aminoderivatives of 1,3,5-Trinitrobenzene. Thermochim. Acta 1993, 216: 157-168.
- [26] Vyazovkin, S.; Burnham, A. K.; Criado, J. M.; Perez-Maqueda, L. A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data. Thermochim. Acta 2011, 520: 1-19.
- [27] Rogers, R. N.; Janney, J. L.; Ebinger, M. H. Kinetic-Isotope Effects in Thermal Explosions. Thermochim. Acta 1982, 59: 287-298.
- [28] Stolovy, A.; Jones, E. C.; Aviles, J. B.; Namenson, A. I.; Fraser, W. A. Exothermic Reactions in TATB Initiated by an Electron Beam. J. Chem. Phys. 1983, 78: 229.
- [29] Catalano, E.; Crawford, P. C. An Enthalpic Study of the Thermal Decomposition of Unconfined Triaminotrinitrobenzene. Thermochem. Acta 1983, 61: 23-36.
- [30] Wu, C. J.; Fried, L. E. Ring Closure Mediated by Intramolecular Hydrogen Transfer in the Decomposition of a Push-Pull Nitroaromatic: TATB. J. Phys. Chem. A 2000, 104: 6447-6452.
- [31] Shao, J.; Cheng, X.; Yang, X. The CNO2 Bond Dissociation Energies of Some Nitroaromatic Compounds: DFT Study. Struct. Chem. 2006, 17: 547-550.
- [32] Manaa, M. R.; Fried, L. E. The Reactivity of Energetic Materials under High Pressure and Temperature. In: Energetic Materials (Sabin, J. R., Ed.) Academic Press, Cambridge MA, USA 2014.
- [33] Tarver, C. M. Chemical Kinetic Modeling of HMX and TATB Laser Ignition Tests. J. Energ. Mat. 2004, 22: 93-104.
- [34] Rosen, J. M.; Dickinson, C. Vapor Pressures and Heats of Sublimation of Some High Melting Organic Explosives. J. Chem. Eng. Data 1969, 14: 120-24.
- [35] Singh, A.; Sharma, T. C.; Kishore, P. Thermal Degradation Kinetics and Reaction Models of 1,3,5-Triamino-2,4,6-trinitrobenzene-based Plastic-bonded Explosives Containing Fluoropolymer Matrices. J. Therm. Anal. Calorim. 2017, 129: 1403-14.
- [36] Tsyshevsky, R. V.; Sharia, O.; Kuklja, M. M. Molecular Theory of Detonation Initiation: Insight from First Principles Modelling of the Decomposition Mechanisms of Organic Nitro Energetic Materials. Molecules 2016, 21: 236.
- [37] Xu, H.; Duan, X.; Li, H.; Pei, C. A. A Novel High-Energetic and Good-sensitive Co-crystal Composed of CL-20 and TATB by a Rapid Solvent/Non-Solvent Method. RSC Adv. 2015, 5: 95764-95770.
- [38] Huang, B.; Minhua Cao, M.; Wu, X.; Nie, F.; Huang, H.; Hu, C. Twinned TATB Nanobelts: Synthesis, Characterization, and Formation Mechanism. Cryst. Eng. Comm. 2011, 13: 6658-6664.
- [39] Tompa, A. S.; Boswell, R. F. Thermal Stability of a Plastic Bonded Explosive. Thermochim. Acta 2000, 357-358: 169-75.
- [40] Zhang, T. L.; Hu, R. Z.; Xie, Y.; Li, F. P. The Estimation of Critical Temperatures of Thermal Explosion for Energetic Materials Using Non-isothermal DSC. Thermochim. Acta 1994, 244: 17.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59cef6c4-c0d0-4612-95c6-f123dbedbee2