PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A system for the determination of surface water pCO2 in a highly variable environment, exemplified in the southern Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Measurement of pCO2 in highly dynamic coastal zones such as the southern Baltic Sea presents many challenges. In this study, we designed a system to measure pCO2 and then validated it in a series of laboratory and seagoing tests. The fast response time of the system was shown to provide a better resolution of CO2 system gradients. In the open waters of the Baltic Sea, the accuracy of the pCO2 measurements (±1.3 µatm) met the requirements of the ICOS (±2.0 µatm). In the coastal zone, there was less consistency between pCO2, DIC and pH measurements, suggesting the need to redefine the quality assurance and control requirements for the measurement of pCO2 in dynamic regions.
Czasopismo
Rocznik
Strony
276--282
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • [1] Arévalo-Martínez, D. L., Beyer, M., Krumbholz, M., Piller, I., Kock, A., Steinhoff, T., Körtzinger, A., Bange, H. W., 2013. A new method for continuous measurements of oceanic and atmospheric N2O, CO and CO2 performance of off-axis integrated cavity output spectroscopy (OA-ICOS) coupled to non-dispersive infrared detection (NDIR). Ocean Sci. Discuss. 10, 1281-1327. https://doi.org/10.5194/osd-10-1281-2013.
  • [2] BACC II Author Team, 2015. Second Assessment of Climate Change for the Baltic Sea Basin, Second Assessment of Climate Change for the Baltic Sea Basin. Regional climate studies., Regional Climate Studies. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-16006-1.
  • [3] Beldowski, J., Löffler, A., Schneider, B., Joensuu, L., 2010. Distribution and biogeochemical control of total CO2 and total alkalinity in the Baltic Sea. J. Marine Syst. 81, 252-259. https://doi.org/10.1016/j.jmarsys.2009.12.020.
  • [4] Carstensen, J., Chierici, M., Gustafsson, B. G., Gustafsson, E., 2018. Long-term and seasonal trends in estuarine and coastal carbonate systems. Global Biogeochem. Cy. 497-513. https://doi.org/10.1002/2017GB005781.
  • [5] Carter, B. R., Radich, J. A., Doyle, H. L., Dickson, A. G., 2013. An automated system for spectrophotometric seawater pH measurements. Limnol. Oceanogr. Methods 11, 16-27. https://doi.org/10.4319/lom.2013.11.16.
  • [6] Clayton, T. D., Byrne, R. H., 1993. Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep Sea Res. Pt. I Oceanogr. Res. Pap. 40, 2115-2129. https://doi.org/10.1016/0967-0637(93)90048-8.
  • [7] Dickson, A. G., 1990. Standard potential of the reaction: AgCl(s)+12H2(g)=Ag(s)+HCl(aq), and and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113-127. https://doi.org/10.1016/0021-9614(90)90074-Z.
  • [8] Dickson, A. G., Sabine, C. L., Christian, J. R., 2007. Guide to Best Practices for Ocean CO2 measurements. PICES Spec. Publ. 3, 191 pp.
  • [9] Doney, S. C., Busch, D. S., Cooley, S. R., Kroeker, K. J., 2020. The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities, 1-30.
  • [10] Graziani, S., Beaubien, S. E., Bigi, S., Lombardi, S., 2014. Spatial and temporal pCO2 marine monitoring near Panarea Island (Italy) using multiple low-cost gaspro sensors. Environ. Sci. Technol. 48, 12126-12133. https://doi.org/10.1021/es500666u.
  • [11] Gustafsson, E., Gustafsson, B. G., 2020. Future acidification of the Baltic Sea — A sensitivity study. J. Marine Syst. 211, 103397. https://doi.org/10.1016/j.jmarsys.2020.103397.
  • [12] Hammer, K., Schneider, B., Kuliński, K., Schulz-Bull, D. E., 2017. Acid-base properties of Baltic Sea dissolved organic matter. J. Marine Syst. 173, 114-121. https://doi.org/10.1016/j.jmarsys.2017.04.007.
  • [13] Hari, P., Pumpanen, J., Huotari, J., Kolari, P., Grace, J., Vesala, T., Ojala, A., 2008. High-frequency measurements of productivity of planktonic algae using rugged nondispersive infrared carbon dioxide probes. Limnol. Oceanogr. Methods 6, 347-354. https://doi.org/10.4319/lom.2008.6.347.
  • [14] Hjalmarsson, S., Wesslander, K., Anderson, L. G., Omstedt, A., Perttilä, M., Mintrop, L., 2008. Distribution, long-term development and mass balance calculation of total alkalinity in the Baltic Sea. Cont. Shelf Res. 28, 593-601. https://doi.org/10.1016/j.csr.2007.11.010.
  • [15] Jiang, Z. P., Hydes, D. J., Hartman, S. E., Hartman, M. C., Campbell, J. M., Johnson, B. D., Schofield, B., Turk, D., Wallace, D., Burt, W. J., Thomas, H., Cosca, C., Feely, R., 2014. Application and assessment of a membrane-based pCO2 sensor under field and laboratory conditions. Limnol. Oceanogr. Methods 12, 264-280. https://doi.org/10.4319/lom.2014.12.264.
  • [16] Körtzinger, A., Thomas, H., Schneider, B., Gronau, N., Mintrop, L., Duinker, J. C., 1996. At-sea intercomparison of two newly designed underway pCO2 systems — encouraging results. Mar. Chem. 52, 133-145. https://doi.org/10.1016/0304-4203(95)00083-6.
  • [17] Kubo, A., Maeda, Y., Kanda, J., 2017. A significant net sink for CO2 in Tokyo Bay. Sci. Rep. 7, 4-5. https://doi.org/10.1038/srep44355.
  • [18] Kuliński, K., Hammer, K., Schneider, B., Schulz-Bull, D., 2016. Remineralization of terrestrial dissolved organic carbon in the Baltic Sea. Mar. Chem. 181, 10-17. https://doi.org/10.1016/j.marchem.2016.03.002.
  • [19] Kuliński, K., Pempkowiak, J., 2011. The carbon budget of the Baltic Sea. Biogeosciences 8, 3219-3230. https://doi.org/10.5194/bg-8-3219-2011.
  • [20] Kuliński, K., Schneider, B., Hammer, K., Machulik, U., Schulz-Bull, D., 2014. The influence of dissolved organic matter on the acid-base system of the Baltic Sea. J. Marine Syst. 132, 106-115. https://doi.org/10.1016/j.jmarsys.2014.01.011.
  • [21] Kuliński, K., Schneider, B., Szymczycha, B., Stokowski, M., 2017. Structure and functioning of the acid-base system in the Baltic Sea. Earth Syst. Dyn. 8, 1107-1120. https://doi.org/10.5194/esd-8-1107-2017.
  • [22] Liu, X., Guo, Y., Hu, H., Sun, C., Zhao, X., Wei, C., 2015. Dynamics and controls of CO2 and CH4 emissions in the wetland of a montane permafrost region, northeast China. Atmos. Environ. 122, 454-462. https://doi.org/10.1016/j.atmosenv.2015.10.007.
  • [23] Millero, F. J., 2010. Carbonate constants for estuarine waters. Mar. Freshw. Res. 61, 139. https://doi.org/10.1071/MF09254.
  • [24] Mosley, L. M., Husheer, S. L. G., Hunter, K. A., 2004. Spectrophotometric pH measurement in estuaries using thymol blue and m -cresol purple 91, 175-186. https://doi.org/10.1016/j.marchem.2004.06.008.
  • [25] Omstedt, A., Humborg, C., Pempkowiak, J., Perttilä, M., Rutgersson, A., Schneider, B., Smith, B., 2014. Biogeochemical Control of the Coupled CO2-O2 System of the Baltic Sea: A Review of the Results of Baltic-C. Ambio 43, 49-59. https://doi.org/10.1007/s13280-013-0485-4.
  • [26] Pempkowiak, J., Kupryszewski, G., 1980. The input of organic matter to the Baltic from the Vistula River. Oceanologia 12, 80-98.
  • [27] Pierrot, D., Lewis, E., Wallace., D. W. R., 2006. MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. Carbon Dioxide Inf. Anal. Center, Oak Ridge Natl. Lab. U.S. Dep. Energy, Oak Ridge, Tennessee.
  • [28] Pierrot, D., Neill, C., Sullivan, K., Castle, R., Wanninkhof, R., Lüger, H., Johannessen, T., Olsen, A., Feely, R. A., Cosca, C. E., 2009. Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines. Deep. Res. Pt II Top. Stud. Oceanogr. 56, 512-522. https://doi.org/10.1016/j.dsr2.2008.12.005.
  • [29] Santos, I. R., Maher, D. T., Eyre, B. D., 2012. Coupling automated radon and carbon dioxide measurements in coastal waters. Environ. Sci. Technol. 46, 7685-7691. https://doi.org/10.1021/es301961b.
  • [30] Schneider, B., Dellwig, O., Kuliński, K., Omstedt, A., Pollehne, F., Rehder, G., Savchyk, O., 2017. Biogeochemical cycles. In: Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (Eds.), Biological Oceanography of the Baltic Sea. Springer, Dordrecht, 87-122. https://doi.org/10.1007/978-94-007-0668-2_3.
  • [31] Schneider, B., Müller, J. D., 2018. Biogeochemical Transformations in the Baltic Sea 2-4. https://doi.org/10.1007/978-3-319-61699-5.
  • [32] Stokowski, M., Kuliński, K., Wejer, J., 2018. Układ nadzorujący ustrój instrumentu pomiarowego i zabezpieczający go przed wpływem niepożądanej wilgoci. P.425618.
  • [33] Stokowski, M., Schneider, B., Rehder, G., Kuliński, K., 2020. The characteristics of the CO2 system of the Oder River estuary (Baltic Sea). J. Marine Syst. 211, 103418. https://doi.org/10.1016/j.jmarsys.2020.103418.
  • [34] Su, J., Cai, W., Brodeur, J., Chen, B., Hussain, N., Yao, Y., Ni, C., Testa, J. M., Li, M., Xie, X., Ni, W., Scaboo, K. M., Xu, Y., Cornwell, J., Gurbisz, C., Owens, M. S., Waldbusser, G. G., Dai, M., Kemp, W. M., 2020. Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling. Nat. Geosci. 13, 441-447. https://doi.org/10.1038/s41561-020-0584-3.
  • [35] Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., Sutherland, S. C., 1993. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study. Global Biogeochem. Cy. 7, 843-878. https://doi.org/10.1029/93GB02263.
  • [36] Ulfsbo, A., Kuliński, K., Anderson, L. G., Turner, D. R., 2015. Modelling organic alkalinity in the Baltic Sea using a Humic-Pitzer approach. Mar. Chem. 168, 18-26. https://doi.org/10.1016/j.marchem.2014.10.013.
  • [37] Uppström, L. R., 1974. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Res. Oceanogr. Abstr. 21, 161-162. https://doi.org/10.1016/0011-7471(74)90074-6.
  • [38] Webb, J. R., Maher, D. T., Santos, I. R., 2016. Automated, in situ measurements of dissolved CO2, CH4, and δ13C values using cavity enhanced laser absorption spectrometry: Comparing response times of air-water equilibrators. Limnol. Oceanogr. Methods 14, 323-337. https://doi.org/10.1002/lom3.10092.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59cbbaef-333a-4017-8d99-cb475f66140a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.