PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Silkworm cocoons waste as an innovative adsorbent for rainwater purification

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie kokonu jedwabnika jako adsorbentu zanieczyszczeń z wody opadowej
Języki publikacji
EN
Abstrakty
EN
Heavy metal pollution of water bodies is a serious environmental problem, especially in developing countries. The search for environmentally friendly and efficient adsorbents for water purification has been the subject of extensive research. The research examined the possibility of using cheap and renewable silkworm cocoon waste as potential adsorbents for rainwater pollution. The waste cocoons of the mulberry silkworm (Bombyx mori L.) came from the Institute of Natural Fibres and Medicinal Plants - National Research Institute (IWNiRZ-PIB) in Poznań. Rainwater was collected from a galvanised drain pipe that drains water from a felt roof, located in the city of Tychy. It was shown that rainwater contained many micropollutants including alkanes, esters and carboxylic acids. The adsorbent was characterised by high adsorption capacity of the micropollutants under study. There was a 70% removal of neadecanoic acids and a 90% removal of esters. The silkworm cocoon was also found to have considerable efficiency in the removal of zinc from rainwater at a level of 61–90% (dose from 2g/L to 10g/L). The lowest dose allows zinc removal below the value standardised according to theregulation. The adsorption time needed to establish equilibrium was short and amounted to 20 min.
PL
Zanieczyszczenie zbiorników wodnych metalami ciężkimi jest poważnym problemem środowiskowym, szczególnie w krajach rozwijających się. Poszukiwanie przyjaznych dla środowiska i wydajnych adsorbentów do oczyszczania wody jest przedmiotem intensywnych badań. W ramach badań przeanalizowano możliwość wykorzystania tanich i odnawialnych odpadów kokonów jedwabników jako potencjalnych adsorbentów do usuwania zanieczyszczeń wody deszczowej. Odpady kokonów jedwabnika morwowego (Bombyx mori L.) pochodziły z Instytutu Włókien Naturalnych i Roślin Zielarskich – Państwowego Instytutu Badawczego (IWNiRZ-PIB) w Poznaniu. Wodę deszczową pobrano z ocynkowanej rury spustowej odprowadzającej wodę z dachu pokrytego papą, zlokalizowanego na terenie miasta Tychy. Wykazano, że woda deszczowa zawiera wiele mikrozanieczyszczeń, w tym alkany, estry i kwasy karboksylowe. Adsorbent charakteryzował się wysoką zdolnością adsorpcji badanych mikrozanieczyszczeń. Odnotowano 70% usunięcie kwasów neadekanowych i 90% estrów. Kokon jedwabnika morwowego wykazał również wysoką skuteczność w usuwaniu cynku z wody deszczowej na poziomie 86% przy dawce 6g/L. Czas adsorpcji do osiągnięcia równowagi był krótki i wynosił 20 min.
Rocznik
Strony
135--146
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Department of Energy and Environmental Engineering
  • Silesian University of Technology, Department of Energy and Environmental Engineering
  • Department of Bioeconomy, Institute of Natural Fibres and Medicinal Plants – National Research Institute
  • Department of Bioeconomy, Institute of Natural Fibres and Medicinal Plants – National Research Institute
Bibliografia
  • 1. Bohdziewicz, J., Dudziak, M., Kamińska, G., & Kudlek, E., (2016). Chromatographic determination and toxicological potential evaluation of selected micropollutants in aquatic environment – analytical problems. Desalination and Water Treatment, 57(3), 1361–1369. https://doi.org/10.1080/19443994.2015.1017325
  • 2. Chandraju, S., & Kumar, C.S.C., (2012). Infl uence on the overall performance of the mulberry silkworm, Bombyx mori L. CSR-18 cocoon reared with V1 mulberry leaves irrigated by distillery spentwash. Asian Journal of Bio Science, 7(2), 1992010202.
  • 3. Chubaka, C.E., Whiley, H., Edwards, J.W., Ross, K.E. (2018). Lead, zinc, copper, and cadmium content of water from South Australian rainwater tanks. International journal of environmental research and public health, 15(7), 1551. https://doi.org/10.3390/ijerph1507155
  • 4. Ferreira, M.P., Santos, P.S., Caldeira, M.T., Estrada, A.C., da Costa, J.P., Rocha-Santos, T., & Duarte, A.C., (2019). White bean (Phaseolus vulgaris L.) as a sorbent for the removal of zinc from rainwater. Water Research, 162, 170–179. https://doi.org/10.1016/j.watres.2019.06.064
  • 5. Ferreira, M.P.S, Santos, P.S.M. Duarte, A.C., (2022). Oxidation of small aromatic compounds in rainwater by UV/H2O2: Optimization by response surface methodology. Science of Th e Total Environment, 815, 152857.3. DOI:10.1016/j.scitotenv.2021.152857
  • 6. Furdui, E., Mar̆ghitas, L., Dezmirean, D., Mihai, C., Bobiș, O., Pașca, I., (2010). Comparative study of biological characteristics of larvae, crude and dried cocoon in 7 races of silkworm Bombyx mori L., raised in Transylvania area. Animal Science and Biotechnologies,43(1).
  • 7. Godiya, C.B., Cheng, X., Deng, G., Li, D., & Lu, X., (2019). Silk fi broin/polyethylenimine functional hydrogel for metal ion adsorption and upcycling utilization. Journal of Environmental Chemical Engineering, 7(10), 102806. https://doi.org/10.1016/j.jece.2018.11.05
  • 8. Grześkowiak, J., Łochyńska, M., & Frankowski, J., (2022). Sericulture in Terms of Sustainable Development in Agriculture. Problemy Ekorozwoju, 17(2).
  • 9. https://echa.europa.eu/pl/substance-information/-/substanceinfo/100.043.707.
  • 10. https://echa.europa.eu/pl/substance-information/-/substanceinfo/100.301.228.
  • 11. Huston, R., Chan, Y.C., Chapman, H., Gardner, T., & Shaw, G., (2012). Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia. Water Research, 46(4), 1121–1132. https://doi.org/10.1016/j.watres.2011.12.008
  • 12. Hwang, S.M., Yeo, Y.H., & Park, W.H., (2022). Facile preparation of tannin-coated waste silk fabric as an effective heavy metal adsorbent. Journal of Environmental Chemical Engineering, 10(5), 108233. https://doi.org/10.1016/j.jece.2022.108233
  • 13. Kgomo, H., Dube, S., Nindi, M.M., (2022). Evaluating the Performance of Ball-Milled Silk Fibroin Films for Simultaneous Adsorption of Eight Pharmaceuticals from Water. International Journal of Environmental Research and Public Health, 19(22), 14922. https://doi.org/10.3390/ijerph192214922
  • 14. Ki, C.S., Gang, E.H., Um, I.C., & Park, Y.H., (2007). Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. Journal of Membrane Science, 302(1–2), 20–26. https://doi.org/10.1016/j.memsci.2007.06.003
  • 15. Kudlek, E., (2018). Decomposition of contaminants of emerging concern in advanced oxidation 529 processes. Water, 10(7), 955, https://doi.org/10.3390/w10070955
  • 16. Kumar, J.S., & Kumar, N.S. (2011). Production efficiency of cocoon shell of silkworm, Bombyx mori L.(Bombycidae: Lepidoptera), as an index for evaluating the nutritive value of mulberry, Morus sp.(Moraceae), varieties. Psyche: A Journal of Entomology.
  • 17. Li, J., Ng, D. H., Song, P., Kong, C., Song, Y., & Yang, P., (2015). Preparation and characterization of high-surface-area activated carbon fibers from silkworm cocoon waste for congo red adsorption. Biomass and Bioenergy, 75, 189–200. https://doi.org/10.1016/j.biombioe.2015.02.002
  • 18. Li, R.P., Hu, Z.R., Shen, L., Ji, Z.X., Zhang, Z. W., Ji, G.J., ... & Wang, Y.H., (2023). Constructing AgBr/BiOBr@ silkworm cocoons photocatalytic degradation and antibacterial material: Based on the excellent adsorption properties of silkworm cocoons. Inorganic Chemistry Communications, 153, 110815. https://doi.org/10.1016/j.inoche.2023.110815
  • 19. Liu, X., Ren, Z., Ngo, H.H., He, X., Desmond, P., & Ding, A., (2021). Membrane technology for rainwater treatment and reuse: A mini review. Water Cycle, 2, 51–63. https://doi.org/10.1016/j.watcyc.2021.08.001
  • 20. Łochyńska, M., & Frankowski, J., (2019). Impact of silkworm excrement organic fertilizer on hemp biomass yield and composition. Journal of Ecological Engineering, 20(10), 63–71. https://doi.org/10.12911/22998993/112858
  • 21. Łochyńska, M., & Frankowski, J., (2018). The biogas production potential from silkworm waste. Waste Management, 79, 564–570. https://doi.org/10.1016/j.wasman.2018.08.019
  • 22. Maghfirah, A., Minamihata, K., Hanada, T., Fajar, A. T., & Goto, M., (2022). Selective recovery of gold from discarded cell phones by silk fibroin from Bombyx mori. Biochemical Engineering Journal, 188, 108690. https://doi.org/10.1016/j.bej.2022.108690
  • 23. Marszałek, A., Dudziak, M., (2021). Application of the Ultrafiltration and Photooxidation Process for the Treatment of Rainwater. Water, Air, & Soil Pollution, 232(12), 504. https://doi.org/10.1007/s11270-021-05465-w
  • 24. Morales-Figueroa, A., Teutli-Sequeira, E.A., Linares-Hernández, I., Martínez-Miranda, V., García-Morales, M. A., Roa-Morales, G., (2022). Optimization of the electrocoagulation process with aluminum electrodes for rainwater treatment. Frontiers in Environmental Science, 10, 860011. https://doi.org/10.3389/fenvs.2022.860011
  • 25. Mullaugh, K.M., Hamilton, J.M., Avery, G.B., Felix, J.D., Mead, R.N., Willey, J. D., Kieber, R.J. (2015). Temporal and spatial variability of trace volatile organic compounds in rainwater. Chemosphere, 134, 203–209.4.DOI: 10.1016/j.chemosphere.2015.04.027
  • 26. Palawat, K., Root, R.A., Cruz, L.I., Foley, T., Carella, V., Beck, C., & Ramírez-Andreotta, M., (2023). Dissolved arsenic and lead concentrations in rooftop harvested rainwater: Community generated dataset. Data in Brief, 48, 109255. https://doi.org/10.1016/j.dib.2023.109255
  • 27. Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019. Polish Journal of Laws/Dz.U. of 2019 item 1311 (In Polish).
  • 28. Wicke, D., Cochrane, T.A., O’Sullivan, A.D., Cave, S., & Derksen, M., (2014). Effect of age and rainfall pH on contaminant yields from metal roofs. Water Science and Technology, 69(10), 2166–2173. https://doi.org/10.2166/wst.2014.124
  • 29. Xu, L., Wu, C., Yap, P. L., Losic, D., Zhu, J., Yang, Y., (...) & Wang, H., (2023). Recent advances of silk fibroin materials: From molecular modification and matrix enhancement to possible encapsulation-related functional food applications. Food Chemistry, 137964. https://doi.org/10.1016/j.foodchem.2023.137964
  • 30. Zhang, J., Ding, W., Zou, G., Wang, X., Zhao, M., Guo, S., & Chen, Y., (2023). Urban pipeline rainwater runoff is an important pathway for land-based microplastics transport to inland surface water: A case study in Beijing. Science of The Total Environment, 861, 160619. https://doi.org/10.1016/j.scitotenv.2022.160619
  • 31. Zhou, L., Li, H., Hao, F., Li, N., Liu, X., Wang, G., ... & Tang, H., (2015). Developmental changes for the hemolymph metabolome of silkworm (Bombyx mori L.). Journal of Proteome Research, 14(5), 2331–2347. https://doi.org/10.1021/acs.jproteome.5b00159
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59c1df8f-de70-434d-ae5d-eca0333c5c95
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.