PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Titanite from the NYF-type pegmatites of Szklarska Poręba Huta quarry, Karkonosze granite massif, SW Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Titanite, an accessory mineral of pegmatite related to aplogranite, was identified in the Szklarska Poręba Huta quarry within the Karkonosze granite massif in Lower Silesia, Poland. It formed during pegmatitic to hydrothermal stages. Besides the isovalent substitution Sn → Ti, the chemical composition of the mineral is characterized by three coupled substitutions: (1) (Al, Fe, Sc)3+ + (OH, F) - → Y Ti + ZO, (2) XREE3+ + Y (Al, Fe, Sc) 3+ → XCa2+ + Y Ti4+, and (3) (Al, Fe, Sc) 3+ + (Nb, Ta)5+ → 2 Y Ti. These substitutions are strongly dependent on the composition of the magma in terms of its Al2O3/TiO2 activity ratio, with the first one also influenced by the H2O/HF fugacity ratio. Fluorine, which induced the most common substitution (1), had its source in high-temperature F-bearing fluids released from rocks of the metamorphic envelope adjacent to the intruding granite. These fluids mobilized and transported various rock components (Sc, REE, Nb, Ta, etc.) among others in the form of fluoride complexes, enriching the aplogranite magma with some metallic elements. The substitution of Sn for Ti developed with decreasing temperature to the extent that in thin ore-mineralized quartz veins cutting aplogranite, titanite reaches Sn-bearing compositions up to the prevalence of Sn corresponding to malayaite.
Rocznik
Strony
art. no. e20
Opis fizyczny
Bibliogr. 80 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mineralogy, Petrography and Geochemistry, AGH University of Krakow
  • Department of Mineralogy, Petrography and Geochemistry, AGH University of Krakow
autor
  • Department of Mineralogy, Petrography and Geochemistry, AGH University of Krakow
autor
  • Department of Mineralogy, Petrography and Geochemistry, AGH University of Krakow
Bibliografia
  • 1. Aleksandrowski, P. and Mazur, S. 2002. Collage tectonics in the northeasternmost part of the Variscan Belt: The Sudetes, Bohemian Massif. Geological Society, London, Special Publications, 201, 237–277.
  • 2. Alexander, J.B. and Flinter, B.H. 1965. A note on varlamoffite and associated minerals from the Batang Padang district, Perak, Malaya, Malaysia. Mineralogical Magazine, 35, 622–627.
  • 3. Basso, R., Lucchetti, G., Zefiro, L. and Palenzona, A. 1994. Vanadomalayaite, CaVOSiO 4 , a new mineral vanadium analog of titanite and malayaite. Neues Jahrbuch für Mineralogie Monatshefte, 11, 489–498.
  • 4. Beirau, T., Mihailova, B., Malcherek, T., Paulmann, C., Bismayer, U. and Groat, L.A. 2014. Temperature-induced P21/c to C2/c phase transition in partially amorphous (metamict) titanite revealed by Raman spectroscopy. The Canadian Mineralogist, 52, 91–100.
  • 5. Berg, G. 1913. Die Erzlagerstätten der nördlichen Sudeten. “Zeitschr, zum XII Allgemeinen Deutschen Bergmannstage in Breslau”. 47 pp. Beiträge zur Geologie Ostdeutschlands. Breslau.
  • 6. Bismayer, U., Schmahl, W., Schmidt, C. and Groat, L.A. 1992. Linear birefringence and X-ray diffraction studies of the structural phase transition in titanite, CaTiSiO 5 . Physics and Chemistry of Minerals, 19, 260–266.
  • 7. Borkowska, M. 1966. Petrography of the Karkonosze granite. Geologia Sudetica, 2, 7–119. [In Polish with French summary]
  • 8. Brugger, J. and Gieré, R. 1999. As, Sb, Be and Ce enrichment in minerals from a metamorphosed Fe-Mn deposit, Val Ferrera, eastern Swiss Alps. The Canadian Mineralogist, 37, 37–52.
  • 9. Cempírek, J., Houzar, S. and Novák, M. 2008. Complexly zoned niobian titanite from hedenbergite skarn at Písek, Czech Republic, constrained by substitution Al(Nb,Ta)Ti -2 , Al(F,OH)(TiO) -1 and SnTi-1 . Mineralogical Magazine, 72, 1293–1305.
  • 10. Černý, P. and Ercit, T.S. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 2005–2026.
  • 11. Černý, P. and Riva di Sanseverino, L. 1972. Comments on crystal chemistry of titanite. Neues Jahrbuch für Mineralogie Monatshefte, 3, 97–103.
  • 12. Černý, P., Novák, M. and Chapman, R. 1995. The Al(Nb,Ta) Ti -2 substitution in titanite: the emergence of a new species? Mineralogy and Petrology, 52, 61–73.
  • 13. Chakhmouradian, A.R., Reguir, E.P. and Mitchell, R.H. 2003. Titanite in carbonatitic rocks: Genetic dualism and geochemical significance. Periodico di Mineralogia, Eurocarb Special Issue, 72, 107–113.
  • 14. Clark, A.M. 1974. A tantalum-rich variety of sphene. Mineralogical Magazine, 39, 605–607.
  • 15. Della Ventura, G., Bellatreccia, F. and Williams, C.T. 1999. Zr- and LREE-rich titanite from Tre Croci, Vico volcaniccomplex (Latinum, Italy). Mineralogical Magazine, 63, 123–130.
  • 16. Duthou, J.L., Couturie, J.P., Mierzejewski, M.P. and Pin, C. 1991. Age determination of the Karkonosze granite using the Rb-Sr isochrone whole-rock method. Przegląd Geologiczny, 36, 75–79. [In Polish]
  • 17. Evans, R.J., Gołębiowska, B., Groat, L.A. and Pieczka, A. 2018. Crystal structure of kristiansenite from Szklarska Poręba, southwestern Poland. Minerals, 8, 584.
  • 18. Franke, W. and Ghobarkar, H. 1980. The morphology of titanite grown from aqueous supercritical solutions. Neues Jahrbuch für Mineralogie, 12 , 564–568.
  • 19. Franz, G. and Spear, F.S. 1985. Aluminious titanite (sphene) from the Eclogite zone, south-central Tauern Window, Austria. Chemical Geology, 50, 33–46.
  • 20. Gajda, E. 1960. Minerals of the pegmatite veins of the Szklarska Poręba vicinity. Kwartalnik Geologiczny, 4, 565–584. [In Polish with English summary]
  • 21. Gieré, R. 1990. Hydrothermal mobility of Ti, Zr and REE: examples from the Bergell and Adamello contact aureoles (Italy). Terra Nova, 2, 60–67.
  • 22. Gramaccioli, C.M., Diella, V. and Demartin, F. 2000. The formation of scandium minerals as an example of the role of complexes in the geochemistry of rare earths and HFS elements. European Journal of Mineralogy, 12, 795–808.
  • 23. Higgins, J.B. and Ribbe, P.H. 1976. The crystal chemistry and space group of natural and synthetic titanites. American Mineralogist, 61, 878–888.
  • 24. Higgins, J.B. and Ribbe, P.H. 1977. The structure of malayaite, CaSnOSiO 4, a tin analog of titanite. American Mineralogist, 62, 801–806.
  • 25. Ilnicki, S. 2011. Amphibolites from the Szklarska Poręba hornfels belt, West Sudetes, SW Poland: Magma genesis and implications for the break-up of Gondwana. International Journal of Earth Sciences, 101, 1253–1272.
  • 26. Jiang, S.Y., Wang, R.C., Xu, X.S. and Zhao, K.D. 2005. Mobility of high field strength elements (HFSE) in magmatic-, metamorphic-, and submarine-hydrothermal systems. Physics and Chemistry of the Earth, 30, 1020–1029.
  • 27. Karwowski, Ł., Olszyński, W. and Kozłowski, A. 1973. Wolframite mineralization from the vicinity of Szklarska Poręba Huta. Przegląd Geologiczny, 21, 633–637. [In Polish]
  • 28. Kek, S., Aroyo, M., Bismayer, U., Schmidt, C., Eichhorn, K. and Krane, H.G. 1997. The two-step phase transition of titanite, CaTiSiO 5: a synchrotron radiation study. Zeitschrift für Kristallographie, 212, 9–19.
  • 29. Kessel, R., Schmidt, M.W., Ulmer, P. and Pettke, T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437, 724–727.
  • 30. Kozłowski, A. 1978. Pneumatolytic and hydrothermal activity in the Karkonosze Izera block. Acta Geologica Polonica, 28, 171–222.
  • 31. Kozłowski, A. 2007. Melt inclusions in quartz from the Karkonosze granitoids. Archivum Mineralogiae Monograph, 1, 147–153.
  • 32. Kozłowski, A. and Karwowski, Ł. 1975. Genetic indications of the W-Sn-Mo mineralisation in the Karkonosze-Izera area. Kwartalnik Geologiczny, 19, 67–73. [In Polish]
  • 33. Kozłowski, A. and Matyszczak, W. 2018. Oxygenic bismuth minerals in the NE part of the Karkonosze pluton (West Sudetes, SW Poland). Acta Geologica Polonica, 68, 537–554.
  • 34. Kozłowski, A. and Matyszczak, W. 2022. Fluorite and related fluids in the Karkonosze granitoid pluton, SW Poland. Acta Geologica Polonica, 72, 9–31.
  • 35. Kozłowski, A. and Sachabiński, M. 2007. Karkonosze intragranitic pegmatites and their minerals. Granitoids in Poland, Archivum Mineralogiae Monograph, 1, 155–178.
  • 36. Kozłowski, A., Ilnicki, S., Matyszczak, W. and Marcinowska, A. 2016. Magmatic and post-magmatic phenomena in the Karkonosze granite and its metamorphic envelope (West Sudetes, SW Poland). Acta Geologica Polonica, 66, 451–471.
  • 37. Kozłowski, A., Karwowski, Ł. and Olszyński, W. 1975. Tungsten-tin-molybdenum mineralization in the Karkonosze massif. Acta Geologica Polonica, 25, 415–430.
  • 38. Kozłowski, A., Sanocka, M. and Dzierżanowski, P. 2002. Tin-tungsten and associate mineralization at Szklarska Poręba Huta, Karkonosze massif, SW Poland. Mineralogical Society of Poland, Special Papers, 20, 248–250.
  • 39. Kröner, A., Hegner, E., Hammer, J., Haase, G., Bielicki, K.H., Krauss, M. and Eidam, J. 1994. Geochronology and Nd-Sr systematics of Lusatian granitoids – significance for the evolution of the Variscan orogen in East-Central Europe. Geologische Rundschau, 83, 357–376.
  • 40. Kryza, R. and Mazur, S. 1995. Contrasting metamorphic paths in the SE part of the Karkonosze-Izera block (Western Sudetes, SW Poland). Neues Jahrbuch fur Mineralogie Abhandlungen, 169, 157–192.
  • 41. Kryza, R., Pin, C., Oberc-Dziedzic, T., Crowley, Q.G. and Larionov, A. 2014a. Deciphering the geochronology of a large granitoid pluton (Karkonosze Granite, SW Poland): An assessment of U-Pb zircon SIMS and Rb-Sr whole-rock dates relative to U-Pb zircon CA-ID-TIMS. International Geology Review, 56, 756–782.
  • 42. Kryza, R., Schaltegger, U., Oberc-Dziedzic, T., Pin, C. and Ovtcharova, M. 2014b. Geochronology of a composite granitoid pluton: a high-precision ID-TIMS U-Pb zircon study of the Variscan Karkonosze Granite (SW Poland). International Journal of Earth Sciences, 103, 683–696.
  • 43. Kusiak, M.A., Williams, I.S., Dunkley, D.J., Konečny, P., Słaby, E. and Martin, H. 2014. Monazite to the rescue: U-Th-Pb dating of the intrusive history of the composite Karkonosze pluton, Bohemian Massif. Chemical Geology, 364, 76–92.
  • 44. Liferovich, R.P. and Mitchell, R.H. 2005. Crystal chemistry of titanite-structured compounds: the CaTi1-x ZrxOSiO4 (x ≤0.5) series. Physics and Chemistry of Minerals, 32, 40–51.
  • 45. Lussier, A.J., Cooper, M.A., Hawthorne, F.C. and Kristiansen, R. 2009. Triclinic titanite from the Heftetjern granitic pegmatite, Tørdal, Southern Norway. Mineralogical Magazine, 73, 709–722.
  • 46. Machowiak, K. and Armstrong, R. 2007. SHRIMP U-Pb zircon age from the Karkonosze granite. Mineralogia Polonica, Special Papers, 31, 193–196.
  • 47. Markl, G. and Piazolo, S. 1999. Stability of high-Al titanite from low pressure calcsilicates in light of fluid and hostrock composition. American Mineralogist, 84, 37–47.
  • 48. Mazur, S. and Aleksandrowski, P. 2001. The Teplá(?)/Saxothuringian suture in Karkonosze-Izera massif western Sudetes, central European Variscides. International Journal of Earth Sciences, 90, 341–360.
  • 49. Mazur, S., Aleksandrowski, P., Kryza, R. and Oberc-Dziedzic, T. 2006. The Variscan orogen in Poland. Geological Quarterly, 50, 89–118.
  • 50. Mazur, S., Aleksandrowski, P., Turniak, K. and Awdankiewicz, M. 2007. Geology, tectonic evolution and Late Palaeozoic magmatism of Sudetes – an overview. Granitoids in Poland, Archivum Mineralogiae Monograph, 1, 59–87.
  • 51. Meyer, H.W., Zhang, M., Bismayer, U., Salje E.K.H., Schmidt, C., Kek, S., Morgenroth, W. and Bleser, T. 1996. Phase transformation of natural titanite: an infrared, Raman spectroscopic, optical birefringence and X-ray diffraction study. Phase Transitions, 59, 39–60.
  • 52. Migdisov, A. and Williams-Jones, A.E. 2014. Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Mineralium Deposita, 49, 987–997.
  • 53. Migdisov, A., Williams-Jones, A.E., Brugger, J. and Caporuscio, F.A. 2016. Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations. Chemical Geology, 439, 13–42.
  • 54. Mikulski, S.Z. 2007. Metal ore potential of the parent magma of granite – the Karkonosze massif example. Granitoids in Poland, Archivum Mineralogiae Monograph, 1, 123–145.
  • 55. Mikulski, S.Z., Williams, I.S., Stein, H.J. and Wierchowiec, J. 2020. Zircon U-Pb dating of magmatism and mineralizing hydrothermal activity in the Variscan Karkonosze massif and its eastern metamorphic cover SW Poland. Minerals, 10, 1–34.
  • 56. Mochnacka, K., Oberc-Dziedzic, T., Mayer, W. and Pieczka, A. 2015. Ore mineralization related to geological evolution of the Karkonosze-Izera Massif (the Sudetes, Poland) – Towards a model. Ore Geology Reviews, 54, 215–238.
  • 57. Mochnacka, K., Pieczka, A., Gołębiowska, B. and Kozłowski, A. 2001. Cassiterite from Rędziny and its relationship to the tin-bearing schist of Izera area (SW Poland). In: Piestrzyński, A. et al. (Eds), Mineral Deposits at the Beginning of the 21 st Century, 457–460. Swets & Zeitlinger Publishers. Lisse-Tokyo.
  • 58. Oberc-Dziedzic, T., Żelaźniewicz, A. and Cwojdziński, S. 1999. Granitoids of the Odra fault zone: late to post-orogenic Variscan intrusions in the Saxothuringian zone, SW Poland. Geologia Sudetica, 32, 55–71.
  • 59. Olszyński, W., Kozłowski, A. and Karwowski, Ł. 1976. Bismuth minerals from the Karkonosze massif. Acta Geologica Polonica, 26, 443–449.
  • 60. Petrascheck, W.E. 1933. Die Erzlagerstätten des Schlesischen Gebirges. Archiv für Lagerstättenforschung, 59, 5–53.
  • 61. Pieczka, A. and Gołębiowska, B. 2002. Pegmatites of the Szklarska Poręba Huta granite quarry: preliminary data on REE mineralization. Mineralogical Society of Poland, Special Papers, 20, 175–177.
  • 62. Pieczka, A. and Gołębiowska, B. 2012. Cuprobismutite homologues in granitic pegmatites from Szklarska Poręba, Karkonosze Massif, Southwestern Poland. The Canadian Mineralogist, 50, 313–324.
  • 63. Pieczka, A., Gołębiowska, B. and Parafiniuk, J. 2009. Conditions of formation of polymetallic mineralization in the eastern envelope of the Karkonosze granite: The case of Rędziny, southwestern Poland. The Canadian Mineralogist, 47, 765–786.
  • 64. Pieczka, A., Gołębiowska, B., Ilnicki, S., Dzierżanowski, P. and Jeżak, L. 2003. Gadolinite group minerals from Szklarska Poręba (SW Poland, Lover Silesia, Karkonosze Mts). International Symposium on Light Elements in Rock-forming Minerals. Book of abstracts, 61–62. Masaryk University & Moravian Museum, Brno.
  • 65. Pieczka, A., Hawthorne, F.C., Ma, C. Rossman, G.R., Szełęg, E., Szuszkiewicz, A., Turniak, K., Nejbert, K., Ilnicki, S.S., Buffat, P. and Rutkowski, B. 2017. Żabińskiite, ideally Ca(Al 0.5 Ta0.5 )(SiO 4)O, a new mineral of the titanite group from the Piława Górna pegmatite, the Góry Sowie Block, southwestern Poland. Mineralogical Magazine, 81, 591–610.
  • 66. Pieczka, A., Zelek-Pogudz, S., Gołębiowska, B., Stadnicka, K.M. and Evans, R.J. 2022. Kozłowskiite, ideally Ca4Fe2+Sn3 (Si2O7)2(Si2O6OH)2, a new kristiansenite-type mineral from Szklarska Poręba, Lower Silesia, Poland. Mineralogical Magazine, 86, 507–517.
  • 67. Pieczka, A., Zelek-Pogudz, S., Gołębiowska, B., Stadnicka, K.M. and Kristiansen, R. 2023. Silesiaite, ideally Ca2Fe3+Sn (Si2O7)(Si2O6OH), a new species in the kristiansenite group: crystal chemistry and structure of holotype silesiaite from Szklarska Poręba, Poland, and Sc-free silesiaite from Häiviäntien, Finland. Mineralogical Magazine, 87, 1–37.
  • 68. Ribbe, P.H. 1980. Titanite. Reviews in Mineralogy, 5, 137–154. Rustioni, G., Audetat, A. and Keppler, H. 2021. The composi- tion of subduction zone fluids and the origin of the trace element enrichment in arc magma. Contributions to Mineralogy and Petrology, 176, 51.
  • 69. Shchekina, T.I., and Gramenitskii, E.N. 2008. Geochemistry of Sc in the magmatic process: Experimental evidence. Geochemistry International, 46, 351–366.
  • 70. Słaby, E. and Martin, H. 2008. Mafic and felsic magma interaction in granites: the Hercynian Karkonosze pluton(Sudetes, Bohemian Massif). Journal of Petrology, 49, 353–391.
  • 71. Speer, J.A. and Gibbs, G.V. 1976. The crystal structure of synthetic titanite, CaTiOSiO4, and the domain textures of natural titanites. American Mineralogist, 61, 238–247.
  • 72. Stepanov, A.V., Bekenova, G.K., Levin, V.L. and Hawthorne, F.C. 2012. Natrotitanite, ideally (Na0.5Y0.5)Ti(SiO4)O, a new mineral from the Verkhnee Espe deposit, Akjailyautas mountains, Eastern Kazakhstan district, Kazakhstan: description and crystal structure. Mineralogical Magazaine, 76, 39–44.
  • 73. Tiepolo, M., Oberti, R. and Vanucci, R. 2002. Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chemical Geology, 191, 105–119.
  • 74. Warr, L.N. 2021. IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291–320.
  • 75. Wilamowski, A. 1998. Geotectonic environment of the Karkonosze and Tatra granite intrusions based on geochemical data. Archiwum Mineralogiczne, 51, 261–271. [In Polish]
  • 76. Williams-Jones, A.E. 2015. The hydrothermal mobility of the rare earth elements. In: Simandl, G.J. and Neetz, M. (Eds.), Symposium on Strategic and Critical Materials Proceedings, 119–123. British Columbia Geological Survey Paper; Victoria, British Columbia.
  • 77. Williams-Jones, A.E. and Vasyukova, O.V. 2018. The economic geology of scandium, the runt of the rare earth element litter. Economic Geology, 113, 973–988.
  • 78. Wise, M.A., Müller, A. and Simmons, W.B. 2022. A proposed new mineralogical classification system for granitic pegmatites. The Canadian Mineralogist, 60, 229–248.
  • 79. Zachariasen, W.H. (1930) The crystal structure of titanite. Zeit schrift für Kristallographie, 73, 7–16. Žák, J., Verner, K., Sláma, J., Kachlík, V. and Chlupáčová, M. 2013. Multistage magma emplacement and progressive strain accumulation in the shallow-level Krkonoše-Jizera plutonic complex, Bohemian Massif. Tectonics, 32, 1493–1512.
  • 80. Zhang, M., Salje, E.K.H., Bismayer, U., Unruh, H.G., Wruck, B. and Schmidt, C. 1995. Phase transition(s) in titanite CaTiSiO 5: an infrared spectroscopic, dielectric response and heat capacity study. Physics and Chemistry of Minerals, 22, 41–49.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59c17a52-13e0-4027-b3f9-6a200393325f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.