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1. Introduction  

Taking into account the importance of the safety and 

operating process effectiveness of technical systems it 

seems reasonable to expand the two-state approach to 

multi-state approach in their reliability analysis. The 

assumption that the systems are composed of multi-

state components with reliability states degrading in 

time [4]-[5], [10] gives the possibility for more precise 

analysis and diagnosis of their reliability and 

operational processes’ effectiveness. This assumption 

allows us to distinguish a system reliability critical 

state to exceed which is either dangerous for the 

environment or does not assure the necessary level of 

its operational process effectiveness. Then, an 

important system safety characteristic is the time to the 

moment of exceeding the system reliability critical 

state and its distribution, which is called the system 

risk function. This distribution is strictly related to the 

system multi-state reliability function that is a basic 

characteristic of the multi-state system. The main 

results determining the multi-state reliability functions 

and the risk functions of typical series, parallel, series-

parallel, parallel-series, series-“k out of n” and “k out 

of n”- series systems with ageing components are 

given in [4]-[5]. The paper is devoted to transmitting 

these results on the multi-state ageing consecutive “ k  

out of n : F” systems [1], [2]-[3], [6], [7]-[8], [9]. 

 

2. Multi-state system with ageing components 

In the multi-state reliability analysis to define systems 

with degrading components we assume that [4]-[5], 

[10]:  

– ,iE ,,...,2,1 ni   are components of a system,  

– all components and a system under consideration 

have the reliability state set {0,1,...,z}, ,1z  

– the state indexes are ordered, the state 0 is the worst 

and the state z is the best,  

– ),(uTi ,,...,2,1 ni   are independent random 

variables representing the lifetimes of components 

iE  in the state subset {u,u+1,...,z}, while they were 

in the state z at the  moment t = 0,  

– ),(uTi  is a random variable representing the 

lifetime of a system in the state subset  {u,u+1,...,z} 

while it was in the state z at the moment t = 0,  

– the system state degrades with time t without repair,  

– )(tei  is a component iE state at the moment t, 

,0t    

– )(ts  is a system state at the moment t, .0t   

The above assumptions mean that the reliability states 

of the system with degrading components may be 

changed in time only from better to worse. The way in 

which the components and the system reliability states 

change is illustrated in Figure 1.          
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A multi-state approach to reliability analysis of systems composed of ageing components is introduced and basic 

reliability characteristics for such systems are defined. Further, a multi-state consecutive “ k  out of n : F” system 

composed of ageing components is defined and the recurrent formulae for its reliability function are proposed. 

Moreover, the application of the proposed reliability characteristics and formulae to reliability evaluation of the 

steel cover composed of ageing sheets is illustrated. 
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worst state                                               best state 

Figure 1. Illustration of reliability states changing in 

system with ageing components 

 

The basis of our further consideration is a system 

component reliability function defined as follows.  

 

Definition 1. A vector     

 

   Rj(t , ) = [Ri(t,0),Ri(t,1),...,Ri(t,z)], ,0t  

 

where    

 

   Ri(t,u) = P(ei(t)  u  ei(0) = z) = P(Ti(u) > t) 

 

for ,0t  u = 0,1,...,z, ,,...,2,1 ni   is the probability 

that the component iE  is in the reliability state subset 

},...,1,{ zuu   at the moment t, ,0t  while it was in 

the reliability state z at the moment t = 0, is called the 

multi-state reliability function of a component .iE   

 

Similarly, we can define a multi-state system reliability 

function.  

 

Definition 2. A vector     

 

   R n (t , ) = [1,R n (t,0),R n (t,1),...,R n (t,z)], ,0t               

 

where   

 

   R n (t,u) = P(s(t)  u  s(0) = z) = P(T(u) > t),         

 

for ,0t  u = 0,1,...,z, is the probability that the system 

is in the reliability state subset },...,1,{ zuu   at the 

moment t, ,0t  while it was in the reliability state z at 

the moment t = 0, is called the multi-state reliability 

function of a system.  

 

Under this definition we have 

 

   Rn(t,0)  Rn(t,1)  . . .  Rn(t,z), ,0t  

 

and if  

 

   p(t) = [p(t,0), p(t,1),..., p(t,z)], ,0t     

 

where 

 

    p(t,u) = P(s(t) = u  s(0) = z),  

 

for ,0t u = 0,1,...,z, is the probability that the system 

is in the state u at the moment t,  ,0t  while it was in 

the state z at the moment ,0t  then   

 

   Rn(t,0) = 1, Rn(t,z) = p(t,z), ,0t                            (1)                

 

and 

 

   p(t,u) = Rn(t,u) - Rn(t,u+1), u = 0,1,...,z-1, .0t     (2) 

 

Moreover, if 

 

   Rn(t,u) =1 for ,0t  ,,...,2,1 zu   

 

then  

 

   M(u) = )]([ uTE = 


0

Rn(t,u)dt, u = 1,2,...,z,             (3)  

 

is the mean lifetime of the system in the state subset 
},,...,1,{ zuu   

 

   
,)]([)()]([)( 2uMuNuTDu                     (4) 

    u = 1,2,...,z,   

 

where    

 

   



0

2)( tuN Rn(t,u)dt, u = 1,2,...,z,                           (5)                 

 

is the standard deviation of the system lifetime in the 

state subset },...,1,{ zuu   and moreover  

 

   M (u) = 


0

,),( dtutp  u = 1,2,...,z,                            (6) 

 

is the mean lifetime of the system in the state u while 

the integrals (3), (4) and (5) are convergent. 

Additionally, according to (1), (2), (3) and (6), we get 

the following relationships 

 

   M (u) = M(u) - M(u+1), u = 1,2,...,z-1,                   (7) 

 

   M (z) = M(z). 
 

Close to the multi-state system reliability function its 

basic characteristic is the system risk function defined 

as follows.   
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Definition 3. A probability  

 

   r(t) = P(s(t) < r  s(0) = z) = P(T(r)  t), ,0t  

 

that the system is in the subset of states worse than the 

critical state r, r {1,...,z} while it was in the reliability 

state z at the moment t = 0 is called a risk function of 

the multi-state system.   

 

Considering Definition 3 and Definition 2, we have    

    

   
),,(1)( rtt nRr   ,0t                                         (8)   

 

and if  is the moment when the system risk function 

exceeds a permitted level , then   

 

    r ),(1                                                                (9)   

 

where r )(1 t , if it exists, is the inverse function of the 

risk function r(t). 

 

3. Reliability of a multi-state ageing consecutive 

„k out of n: F” system 

Definition 4. A multi-state system is called an ageing 

consecutive “ k  out of n : F” system if it is out of the 

reliability state subset {u,u+1,...,z} if and only if at 

least its k  neighbouring components out of n  its 

components arranged in a sequence of ,1E  ,2E  ..., 

,nE  are out of this reliability state subset. 

 

In our further analysis, we denote by )(, ts nk  the 

reliability state of the ageing consecutive “ k  out of n : 

F” system at the moment t, ),,0 t  and by )(, uT nk  

the lifetime of this system in the reliability subset 

{u,u+1,...,z}. Moreover, we denote by   

 

   
),(, utnkR utsP nk  )(( ,  s(0) = z) ))(( , tuTP nk    

 

for ,0t  u = 0,1,...,z, the probability that the 

ageing consecutive “ k  out of n : F” system is in the 

reliability state subset },...,1,{ zuu   at the moment 

t, ,0t  while it was in the reliability state z at the 

moment t = 0 and by   
 

   
),(, utnkF 1 ),(, utnkR ))(( , tuTP nk   

 

for ,0t  u = 0,1,...,z, the distribution function of 

the lifetime )(, uT nk of this system in the reliability 

state subset {u,u+1,...,z} while it was in the state z at 

the moment t = 0. 

Theorem 1. The reliability function of the ageing 

consecutive “ k  out of n : F” system composed of 

components with independent failures is given by the 

following recurrent formula 

  

   
),(, tnkR = [1, ),1,(, tnkR ),2,(, tnkR  ..., ),(, ztnkR ],  

 

where 
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for ,,0 t  u = 1,2,...,z. 

 

Motivation. Since for each fixed ,u  ,,...,2,1 zu   the 

assumptions of this theorem as the same as the 

assumptions of Theorem 2 proved in [2] and the 

formula (10) is equivalent with the formula (12) from 

[2], then after considering Definition 4, we conclude 

that this theorem is valid.       

 

From the above theorem, as a particular case for the 

system composed of components with identical 

reliability, we immediately get the following corollary.   

 

Corollary 1. If components of the ageing consecutive 

“ k  out of n : F” system are independent and have 

identical reliability functions, i.e.  

 

   
),,(),( utRutRi   ),(),( utFutFi   for ),,0 t  

    u = 1,2,...,z, ni ,...,2,1 , 

 

then the reliability function of this system is given by   

 

   
),(, tnkR = [1, ),1,(, tnkR ),2,(, tnkR  ..., ),(, ztnkR ],  

 

where  
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for ),,0 t  u = 1,2,...,z. 

 

From Corollary 1, in a particular case, substituting 

2k  in (11), we get:    

 

- for 1n   

 

   
),(1,2 tR = [1, ),1,(1,2 tR ),2,(1,2 tR  ..., ),(1,2 ztR ],   (12) 

 

where  

 

   
1),(1,2 utR  for ),,0 t  ,,...,2,1 zu             (13) 

 

- for 2n   

 

   
),(2,2 tR = [1, ),1,(2,2 tR ),2,(2,2 tR  ..., ),(2,2 ztR ], (14) 

 

where  

 

   ),(1),( 2
2,2 utFut R  for ),,0 t                 (15)  

   ,,...,2,1 zu                                 

 

- for 3n   

 

   
),(,2 tnR = [1, ),1,(,2 tnR ),2,(,2 tnR  ..., ),(,2 ztnR ], (16) 

 

where  

 

   
),(,2 utnR ),( utR ),(1,2 utnR

 
 

   
),(),( utFutR ),(2,2 utnR  for ),,0 t           (17) 

   .,...,2,1 zu      

 

4. Application 

Example 1. Let us consider the steel cover 

composed of 24n  arranged identical sheets 

2421 ,...,, EEE . We assume that ,4z  i.e. the cover 

and the sheets it is composed of may be in the one 

of the reliability states from the set }.4,3,2,1,0{  The 

cover is out of the reliability state subset 

}4,...,1,{ uu  if at least 2k  of its neighbouring 

sheets is out of this reliability state subset. If the 

considered steel cover critical reliability state is 

2r , then this steel cover is failed if at least 2 

neighbouring sheets from 24 sheets are out of the 

reliability state subset }.4,3,2{  Thus, the 

considered steel cover is a five-state ageing 

consecutive “2 out of 24: F” system, and 

according to (16)-(17), its the reliability function 

is given by  
 

   
),(24,2 tR =  

 

   [1, ),1,(24,2 tR ),2,(24,2 tR ),3,(24,2 tR )4,(24,2 tR ],   (18) 

 

where 

 

   
),(24,2 utR ),( utR ),(23,2 utR

 
 

   
),(),( utFutR ),(22,2 utR  for ),,0 t             (19)      

   .4,3,2,1u  

   

In the particular case when the lifetimes )(uTi , 

,4,3,2,1u  of the sheets ,iE  ,5,4,3,2,1i  in the 

reliability state subsets have Weibull distributions of 

the form   

   

   

2)(1),( tueutF   for ,0t  ,4,3,2,1u  

 

where  

 
   ,01.0)1(   ,02.0)2(   ,05.0)3(   ,10.0)4(   

 

i.e. if the reliability function of the sheets ,iE  

,5,4,3,2,1i  is given by  

 

R(t ,  ) = [1,R(t,1), R(t,2), R(t,3), R(t,4)], t  <0,),  

 

where  

 

   
,)1,(

201.0 tetR   ,)2,(
202.0 tetR 

 
,)3,(

205.0 tetR 
  

 

   

210.0)4,( tetR   for ,0t   

 

considering (12)-(19), we get the following recurrent 

formula for the cover reliability  

 

),(24,2 tR =  

 

   [1, ),1,(24,2 tR ),2,(24,2 tR ),3,(24,2 tR )4,(24,2 tR ],   (20) 
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where 

 

- )1,(24,2 tR  is determined by the formulae  

 

   1)1,(1,2 tR  for ),,0 t                                    (21) 

 

   1)1,(2,2 tR
201.0 ]1[

2te  for ),,0 t           (22) 

 

   
)1,(,2 tnR

201.0 te )1,(1,2 tnR
 

 

   

201.0 te ]1[
201.0 te )1,(2,2 tnR  for ),,0 t  (23) 

   ,24,...,4,3n       

   

- )2,(24,2 tR  is determined by the formulae  

 

   1)2,(1,2 tR  for ),,0 t                                   (24) 

 

   1)2,(2,2 tR
202.0 ]1[

2te  for ),,0 t          (25) 

 

   
)2,(,2 tnR

202.0 te )2,(1,2 tnR
 

 

   

202.0 te ]1[
202.0 te )2,(2,2 tnR  for ),,0 t (26) 

   ,24,...,4,3n  

 

- )3,(24,2 tR  is determined by the formulae  

 

   1)3,(1,2 tR  for ),,0 t                                   (27) 

 

   1)3,(2,2 tR
205.0 ]1[

2te  for ),,0 t          (28) 

 

   
)3,(,2 tnR

205.0 te )3,(1,2 tnR
 

 

   

205.0 te ]1[
205.0 te )3,(2,2 tnR  for ),,0 t  (29) 

   ,24,...,4,3n  

 

- )4,(24,2 tR  is determined by the formulae  

 

   1)4,(1,2 tR  for ),,0 t                                   (30) 

 

   1)4,(2,2 tR
210.0 ]1[

2te  for ),,0 t          (31) 

 

   
)4,(,2 tnR

210.0 te )4,(1,2 tnR
 

 

   

210.0 te ]1[
210.0 te )4,(2,2 tnR  for ),,0 t (32) 

   .24,...,4,3n  

  
The values of the particular vector components of the 

multi-state reliability function of the steel cover given 

by (20), calculated by the computer programme based 

on the formulae (21)-(32), are presented in the Tables 

1-4 and illustrated in Figure 1. As earlier we have 

assumed that 2r  is the cover critical reliability state, 

then according to (8) and (26) its risk function is given 

by  

 

   r(t) = 1 - )2,(24,2 tR
202.01 te )2,(23,2 tR

 
 

   

202.0 te ]1[
202.0 te )2,(22,2 tR  for ).,0 t    (33) 

 

The values of the steel cover risk function are given in 

Table 5 and illustrated in Figure 2. 

 

Table 1. The values of the steel cover multi-state 

reliability function vector component 1u                                   

 

t  )1,(24,2 tR  t2 )1,(24,2 tR  

0.0 1.0000 0.0000 

1.0 0.9978 1.9955 

2.0 0.9664 3.8657 

3.0 0.8531 5.1183 

4.0 0.6362 5.0889 

5.0 0.3750 3.7499 

6.0 0.1664 1.9957 

7.0 0.0538 0.7534 

8.0 0.0125 0.2001 

9.0 0.0021 0.0374 

10.0 0.0002 0.0049 

 

Table 2. The values of the steel cover multi-state 

reliability function vector component 2u                                   

 

t  )2,(24,2 tR  t2 )2,(24,2 tR  

0.0 1.0000 0.0000 

0.5 0.9994 0.9994 

1.0 0.9912 1.9824 

1.5 0.9580 2.8742 

2.0 0.8802 3.5207 

2.5 0.7479 3.7398 

3.0 0.5731 3.4388 

3.5 0.3876 2.7131 

4.0 0.2275 1.8200 

4.5 0.1145 1.0307 

5.0 0.0491 0.4905 

5.5 0.0178 0.1958 

6.0 0.0055 0.0655 

6.5 0.0014 0.0184 

7.0 0.0003      0.0044 
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Table 3 The values of the steel cover multi-state 

reliability function vector component 3u                                   

 

t  )3,(24,2 tR  t2 )3,(24,2 tR  

0.0 1,0000 0,0000 

0.2 0.9999 0.3999 

0.4 0.9986 0.7988 

0.6 0.9928 1.1914 

0.8 0.9781 1.5649 

1.0 0.9489 1.8978 

1.2 0.9005 2.1613 

1.4 0.8302 2.3246 

1.6 0.7385 2.3632 

1.8 0.6299 2.2675 

2.0 0.5122 2.0489 

2.2 0.3953 1.7392 

2.4 0.2883 1.3837 

2.6 0.1980 1.0298 

2.8 0.1278 0.7158 

3.0 0.0774 0.4642 

3.2 0.0438 0.2806 

3.4 0.0233 0.1581 

3.6 0.0115 0.0830 

3.8 0.0053 0.0406 

4.0 0.0023 0.0185 

 

Table 4. The values of the steel cover multi-state 

reliability function vector component 4u                                   

 

t  )4,(24,2 tR  t2 )4,(24,2 tR  

0.0 1.0000 0.0000 

0.1 0.9999 0.0399 

0.2 0.9996 0.1599 

0.3 0.9982 0.3593 

0.4 0.9943 0.6364 

0.5 0.9864 0.9864 

0.6 0.9725 1.4004 

0.7 0.9508 1.8636 

0.8 0.9195 2.3540 

0.9 0.8775 2.8433 

1.0 0.8244 3.2975 

1.1 0.7605 1.6731 

1.2 0.6875 1.6499 

1.3 0.6076 1.5799 

1.4 0.5242 1.4677 

1.5 0.4406 1.3217 

1.6 0.3602 1.1528 

1.7 0.2862 0.9731 

1.8 0.2207 0.7944 

1.9 0.1650 0.6269 

2.0 0.1195 0.4779 

2.1 0.0838 0.3519 

2.2 0.0569 0.2502 

2.3 0.0373 0.1718 

2.4 0.0237 0.1138 

2.5 0.0146 0.0728 

2.6 0.0086 0.0450 

2.7 0.0050 0.0268 

2.8 0.0028 0.0154 

2.9 0.0015 0.0086 

3.0 0.0008 0.0046 

 

u=1

u=2

u=3
u=4

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

t

R2,24(t,u)

 
Figure 1. The graphs of the steel cover multi-state 

reliability function vector components 

 

Table 5. The values of the steel cover multi-state 

reliability function vector component 2u  and its risk 

function                                  

 

t  )2,(24,2 tR  r(t) = 1- )2,(24,2 tR  

0.0 1.0000 0.0000 

0.5 0.9994 0.0006 

1.0 0.9912 0.0088 

1.5 0.9581 0.0419 

2.0 0.8802 0.1198 

2.5 0.7480 0.2520 

3.0 0.5731 0.4269 

3.5 0.3876 0.6124 

4.0 0.2275 0.7725 

4.5 0.1145 0.8855 

5.0 0.0490 0.9510 

5.5 0.0178 0.9822 

6.0 0.0055 0.9945 

6.5 0.0014 0.9986 

7.0 0.0003      0.9997 
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Figure 2. The graphs of the steel cover risk function 

 

Using the values given in these Tables 1-4, the 

formulae (3)-(7) and numerical integration we find:  

- the mean values of the cover lifetimes in the 

reliability state subsets   

 

   )]1([)1( 24,2TEM  


0

R2,24(t,1)dt  4.5634,  

   )]2([)2( 24,2TEM  


0

R2,24(t,2)dt  3.2268,  

   )]3([)3( 24,2TEM  


0

R2,24(t,3)dt  2.0408,  

   )]4([)4( 24,2TEM  


0

R2,24(t,4)dt  1.4431,  

 

- the second ordinary moments of the cover lifetimes in 

the reliability state subsets 

 

    
 )]1([)1( 2

24,2TEN 


0

2 t R2,24(t,1)dt  22.9715, 

   
 )]2([)2( 2

24,2TEN 


0

2 t R2,24(t,2)dt  11.4879, 

   
 )]3([)3( 2

24,2TEN 


0

2 t R2,24(t,3)dt  4.5944, 

   
 )]4([)4( 2

24,2TEN 


0

2 t R2,24(t,4)dt  2.2967, 

      

- the standard deviations of the cover lifetimes in the 

reliability state subsets   

 

   
 2)]1([)1()1( MN  1.4651,           

 

    2)]2([)2()2( MN  1.0370, 

    

   
 2)]3([)3()3( MN  0.6553, 

    

   
 2)]4([)4()4( MN  0.4628, 

 

- the mean values of the cover lifetimes in the 

reliability particular states 

 

   )2()1()1( MMM 4.5634 - 3.2268 = 1.3366,                    

 

  )3()2()2( MMM 3.2268 - 2.0408 = 1.1860, 

 

  )4()3()3( MMM 2.0408 - 1.4431 = 0.5977, 

 

  )4()4( MM   1.4431. 

 

Using the values given in these Tables 5 and the 

formula (9) we find the approximate value of the  

moment when the system risk function exceeds an 

exemplary permitted level  = 0.05, namely   

 

    r  )05.0(1  1.58.                                        

 

5. Conclusion 

Two recurrent formulae for multi-state reliability 

functions, a general one for non-homogeneous and its 

simplified form for homogeneous multi-state 

consecutive “ k  out of n : F” systems composed of 

ageing components have been proposed. The formulae 

for multi-state reliability function of a homogeneous 

multi-state consecutive “ k  out of n : F” system has 

been applied to reliability evaluation of the steel cover 

composed of ageing components. The considered steel 

cover was a five-state ageing consecutive “2 out of 24: 

F” system composed of components with Weibull 

reliability functions. On the basis of the recurrent 

formula for steel cover multi-state reliability function 

the approximate values of its vector components have 

been calculated and presented in tables and illustrated 

graphically. On the basis of these vales the mean 

values and standard deviations of the steel cover 

lifetimes in the reliability state subsets and the mean 

values of the steel cover lifetimes in particular 

reliability states have been estimated. Moreover, the 

cover risk function and the moment when the risk 

function exceeds the permitted risk level have been 

determined. 

The input structural and reliability data of the 

considered steel cover have been assumed arbitrarily 

and therefore the obtained its reliability characteristics 

evaluations should be only treated as an illustration of 

the possibilities of the proposed methods and solutions.   

The proposed methods and solutions and the software 

are general and they may be applied to any multi-state 

consecutive “k out of n: F” system of ageing 

components.   
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