PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected properties of concrete with recycled aggregate subjected to biodeposition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the influence of biomodification of recycled concrete aggregate (RCA) on some properties of concrete was studied. Sporosarcina pasteurii strain was chosen for biodeposition process. The RCA came from parent concretes with varying w/c ratio. Recycled aggregate concrete (RAC) with two levels of w/c ratio, made from RCA not subjected to biomodification, was treated as reference. Compressive strength, water absorption and sorption of concretes were tested. The most significant influence of the aggregate biomodification was found in the case of sorption and this effect was highest for RAC made from the aggregate yielding from better quality parent concrete.
Rocznik
Strony
1171--1179
Opis fizyczny
Bibliogr. 66 poz., rys., tab.
Twórcy
  • Poznań University of Life Sciences, Institute of Construction and Geoengineering, 94E Piątkowska St., 60-649 Poznań, Poland
autor
  • Poznań University of Life Sciences, Institute of Construction and Geoengineering, 94E Piątkowska St., 60-649 Poznań, Poland
autor
  • Poznań University of Life Sciences, Department of Agricultural Microbiology, 50 Szydłowska St., 60-656 Poznań, Poland
  • Poznań University of Life Sciences, Institute of Construction and Geoengineering, 94E Piątkowska St., 60-649 Poznań, Poland
Bibliografia
  • [1] G. Eason, B. Noble, and I.N. Sneddon, “On certain integrals of Lipschitz-Hankel type involving products of Bessel functions”, Phil. Trans. Roy. Soc. London,. A247, 529‒551 (1995).
  • [2] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. pp.68‒73, Clarendon, Oxford, 1892.
  • [3] I.S. Jacobs and C.P. Bean, “Fine particles, thin films and exchange anisotropy”, in Magnetism, vol. III, pp. 271‒335, eds. G.T. Rado and H. Suhl, Academic Press, New York, 1963.
  • [4] K. Elissa, “Title of paper”, Quarterly, (to be published)
  • [5] R. Nicole, “Title of paper with only first word capitalized”, J. Name Stand. Abbrev., (to be published).
  • [6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy studies on magneto-optical media and plastic substrate interface”, IEEE Transl. J. Magn. 2, 40‒41 (1987), [in Japanese].
  • [7] M. Young, The Technical Writer’s Handbook, Mill Valley, Toronto, 1989.
  • [8] P. Apostoli and A. Kanda, “Cantorian sets, fuzzy sets, rough sets and fregean sets”, Bull. Pol. Ac.: Tech. 50(3), 247‒276 (2002).
  • [9] N. Oikonomou, “Recycled concrete aggregates,” Cement and Concrete Composites, 27(2), 1143‒1148 (2005).
  • [10] L. Czarnecki and D. Van Gemert, “Innovation in construction materials engineering versus sustainable development,” Bulletin of the Polish Academy of Sciences. Technical Sciences, 65(6), 765‒771 (2017).
  • [11] V.W.Y. Tam, M. Soomro, and A. Evangelista, “A review for recycled concrete applications (2000‒2017)”, Construction and Building Materials, 172, 272‒292 (2018).
  • [12] K.K. Sagoe-Crentsil, T. Brown, and A.H. Taylor, “Performance of concrete made with commercially produced coarse recycled concrete aggregate,” Cement and Concrete Research, 31(5), 707‒712 (2001).
  • [13] B. Zając and I. Gołębiewska, „Nowoczesne metody recyklingu betonu,” Inżynieria i Aparatura Chemiczna, 49(5), 136‒137 (2010) [in Polish].
  • [14] D. Zawal, A.M. Grabiec, and B.J. Wosiewicz, ”Wytrzymałość betonu z dużą zawartością betonowego kruszywa z recyklingu,” Acta Scientiarum Polonorum, Seria Architectura, 13(4), 43‒56 (2014) [in Polish].
  • [15] B. Zając, and I. Gołębiewska, ”Przyszłość betonu z recyklin-gowym kruszywem betonowym,” Inżynieria i Aparatura Chemiczna, 53(6), 390‒392 (2014 ) [in Polish].
  • [16] C. Shi, Y. Li, Y. Zhang, W. Li, L.Chong, and Z. Xie, “Performance enhancement of recycled concrete aggregate – A review,” Journal of Cleaner Production, 112(1), 466‒472 (2016).
  • [17] H. Shima, R. Matsuhshi, Y. Yoshida, and H. Tateyashiki, “Life Cycle Analysis of High Quality Recycled Aggregate Produced by Heating and Rubbing Method,” Ieej Transactions Electronics Information and Systems, 123(10), 1680‒1687 (2003).
  • [18] H. Shima, H. Tateyashiki, R. Matsuhashi, and Y. Yoshida,“An advanced concrete recycling technology ant its applicability assessment through input-output analysis,” Journal of Advanced Concrete Technology, 3(3), 53‒67 (2005).
  • [19] A. Katz, “Treatments for the Improvement of Recycled Aggregate,” Materials in Civil Engineering, 16(6), 531‒535 (2004).
  • [20] A. Akbarnezhad, K.C.B. Ong, M-H. Zhang, M.H. Zakaria, and Tim-Tam Chat, “Acid treatment technique for determining the mortar content of recycled concrete aggregates,” Journal of Testing and Evaluation, 41(3), 441‒450 (2013).
  • [21] H.S. Kim, B. Kim, and K. S. Kim, “Quality improvement of recycled aggregates using the acid treatment methods and the strength characteristics of the resulting mortar,” Journal of Materials Cycles and Waste Management, 19(2), 1‒9 (2017).
  • [22] H. Zhang, Y. Zhao, T. Meng, and P.S. Surendra, “The modification effects of a nanosilica slurry on microstructure, strength, and strain development of recycled aggregate concrete applied in an enlarged structural test,” Construction and Building Materials, 95, 721‒735 (2015).
  • [23] H. Zhang, Y. Zhao, T. Meng, and P. S. Surendra, “Surface Treat-ment on Recycled Coarse Aggregates with Nanomaterials,” Jour-nal of Materials in Civil Engineering, 28(2), 1‒11 (2016).
  • [24] T. Kikuchi and Y. Kuroda, “Carbon Dioxide Utake in Demolished and Crushed Concrete,” Journal of Advanced Concrete Technology,9(1), 115‒124 (2011).
  • [25] S. C. Kou, P. J. Zhan, and C. S. Poon, “Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates,” Cement and Concrete Composites, 45(1), 22‒28, (2014).
  • [26] V.W.Y. Tam, A. Butera, and K.N. Le, (2016), “Carbon-conditioned recycled aggregate in concrete production)”, Journal of Cleaner Production, 133, 672‒680 (2016).
  • [27] J. Dick, B. De Wind, H. De Graef, P. Saveyn, P. Van Der Meeren, N. De Belie, and W. Verstraete, “Biodeposition of calcium carbonate layer on degraded limestone by Bacillus species,” Bio-degradation, 117(4), 357‒367 (2006).
  • [28] L. Czarnecki and P. Łukowski, ”Betony i zaprawy samonaprawi-alne – krok ku inteligentnym materiałom naprawczym,” Materiały Budowlane, 113(2), 1‒4 (2008) [in Polish].
  • [29] Q. Chunxiang, W. Jianyun, W. Ruixing, and C. Liang, “Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii,” Materials Science and Engineering C, 29(4), 1273‒1280 (2009).
  • [30] W. De Muynck, N. De Belie, and W. Verstrate, “Microbial carbonate precipitation in construction materials,” Ecological Engineering, 36(2), 118‒136 (2010).
  • [31] J. Park, S. Park, W-J. Kim, and S-Y. Ghim, “Application of Bacillus subtilis 168 as a multifunctional Agent for Improvement of the durability of Cement Mortar,” Journal of Microbiology and Biotechnology,22(11), 1568‒1574 (2012).
  • [32] F. Nosouhian, D. Mostofi Nejad, and H. Hasheminejad, “Influence of biodeposition treatment on concrete durability in sulphate environment,” Biosystems Engineering,133, 141‒152 (2015).
  • [33] C. Lors, J. Ducasse-Lapeyrouse, R. Gagné, and D. Damodot, “Microbiologically induced carbonate precipitation to repair microcracks remaining after autogenous healing of mortars,” Construction and Building Materials,141, 461‒46 (2017).
  • [34] V.S. Whiffin, L.A. van Paassen, and M.P. Harkes, “Microbial carbonate precipitation as a soil improvement technique,” Geomicrobiology Journal, 245), 417–423 (2007).
  • [35] V. Ivanov and J. Chu, “Applications of microorganisms to geo-technical engineering for bioclogging and biocementation of soil in situ,” Reviews in Environmental Science and Biotechnology, 7(2), 139‒153 (2008).
  • [36] J.T. DeJong, B.M. Mortensen, B.C. Martinez, and D.C. Nelson, “Bio-mediated soil improvement,” Ecological Engineering,36, 197‒210 (2010).
  • [37] B.M. Montoya, “Bio-Mediated Soil Improvement and the Effect Cementation on the Behavior, Improvement, and Performance of Sand,” PhDThesis, University of California, Davis, USA, (2012).
  • [38] R. Cardoso, R. Pedreira, S. Duarte, G.A. Monteiro, H. Borges, and I.F. Colen, “Biocementation as Rehabilitation Technique of Porous Materials,” In: Delgado J. (eds) New Approaches to Building Pathology and Durability. Building Pathology and Rehabilitation, vol 6. Springer, Singapore (2016).
  • [39] J. Chu, V. Ivanov, M. Naemi, V. Stabnikov, and H.L.L. Liu, “Optimization of calcium-based bioclogging and biocementation of sand,” Acta Geotechnica,9, 277‒285 (2014).
  • [40] N.K. Dhami, S. Reddy, and A. Mukherje, “Significant indicators for biomineralization in sand of varying grain size,” Construction and Building Materials,104, 298‒207 (2016).
  • [41] A.M. Grabiec, J. Starzyk, K. Stefaniak, J. Wierzbicki, and D. Zawal, “On possibility of improvement of compacted silty soils using biodeposition method,” Construction and Building Materials,138, 134‒140 (2017).
  • [42] Q. Chunxiang, W. Jianyun, W. Ruixing, and C. Liang, “Corrosion protection of cementbased building materials by surface deposition of CaCO3 by Bacillus pasteurii”, Materials Science and Enigineering C, 29(4), 1273–80 (2009).
  • [43] S. Stocks-Fischer, J.K. Galinat, and S.S. Bang, “Microbiological precipitation of CaCO3”. Soil Biology and Biochemistry 3, 1563–71 (1999).
  • [44] V.R. Kumar, B. Bhuvaneshwari, S. Maheswaran, G.S. Pelani, K. Rivisankar, and N.R. Iyer, “An overview of technique based on biomimetics for sustainable development of concrete,” Cur-rent Science, 101(6), 741‒747 (2011).
  • [45] V. Achal, A. Mukherjee, D. Kumari, and Q. Zhang, “Biominer-alization for sustainable construction – A review of process and applications,” Earth-Science Review, 148, 1‒17 (2015).
  • [46] S. Luhar and S. Gourav, “A Review Paper on Self Healing Concrete,” CivilEngineering Research, 5(9), 53‒58 (2015).
  • [47] L.S. Wong, “Microbial cementation of ureolytic bacteria from the genus Bacillus: a review of the bacteria application on cement based materials for cleaner production,” Journal of Cleaner Pro-duction,93, 5‒17 (2015).
  • [48] Y. Al.-Salloum, S. Hadi, H. Abbas, T. Alusallan, and M.A. Moslem, “Bio-induction and bioremediation of cementitious composites using microbial mineral precipitation – A review,” Con-struction and Building Materials, 154, 857‒876 (2017).
  • [49] S. Gupta, P.S. Dai, and K.H. Wei, “Autonomous healing in concrete by bio-based healing agents – A review,” Construction and Building Materials, 146, 419‒428 (2017).
  • [50] V. Ivanov and V. Stabnikov, “Construction Biotechnology. Bio-geochemistry, Microbiology and Biotechnology of Construction Materials and Process,” Springer, Singapore (2017).
  • [51] A.M. Grabiec, J. Klama, D. Zawal, and D. Krupa, “Modification of recycled concrete aggregate by calcium carbonate biodeposition,” Construction and Building Materials,34, 145‒150 (2012).
  • [52] J. Qiu, D.Q.S. Tng, and E.H. Yang, “Surface treatment of recycled concrete aggregates through microbial carbonate precipitation,” Construction and Building Materials,57, 144‒150 (2014).
  • [53] B. Vadevyvere and S. Vanhessche, “Improving the quality of recycled aggregates by biodeposition of CaCO3 in the pore structure”. Master’s dissertation. Faculty of Engineering and Archi-tecture. Universiteit Gent (2016).
  • [54] J. Wang, B. Vandevyryvere, S. Vanhessche, J. Schoon, N. Boon, and N. De Belie, “Microbial carbonate precipitation for the improvement of quality of recycled aggregate,” Journal of Cleaner Production, 156, 355‒366 (2017).
  • [55] J. García-Gonzáles, D. Rodríguez-Robles, J. Wang, N. De Belie, J.M. Morán-del Pozo, M.J. Guerrá-Romero, and A. Juan Valdés, “Quality improvement of mixed and ceramic recycled aggregates by biodeposition of calcium carbonate,” Construction and Building Materials,154, 1015‒1023 (2017).
  • [56] J. Jasiczak and P. Mikołajczyk, “Technologia betonu modyfikow-anego domieszkami i dodatkami. Przegląd tendencji krajowych i zagraniczych”, Wydawnictwo Politechniki Poznańskiej, Poznań (1997) [in Polish].
  • [57] V. Achal, A. Mukherjee, P.C. Besu, and M.S. Reddy, “Lactose mother liquor as an alternative nutrient source for microbial concrete production,” Indian Journal of Industrial Microbiology and Biotechnology, 3693, 433‒438 (2009).
  • [58] W. Kurdowski, “Chemia cementu i betonu”, Stowarzyszenie Producentów Cementu, Kraków (2010) [in Polish].
  • [59] V.W.Y. Tam, X.F. Gao, C.M. Tam, and C.H. Chan, “Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach,” Construction and Concrete Research,35(6), 1195‒1203 (2005).
  • [60] F.T. Olorunsogo and N. Padayachee, “Performance of recycled aggregate monitored by durability indexes,” Cement and Concrete Research, 32(2), 179‒185 (2002).
  • [61] P.J.M. Monteiro and P.K. Mehta, “Interaction between carbonate rock and cement paste,” Cement and Concrete Research, 16(2), 127–134 (1986).
  • [62] T. Matschei, B. Lothenbach, and F.P. Glasser, “The role of calcium carbonate in cement hydration,” Cement and Concrete Research, 37(4), 551–558 (2007).
  • [63] K.L. Scrivener, P. Juilland, and P.J.M. Monteiro, “Advances in understanding hydration of Portland cement,” Cement and Concrete Research 78, 38‒56 (2015).
  • [64] D.P. Bentz, A. Ardani, T. Barrett, S.Z. Jones, D. Lootens, M.A. Peltz, T. Sato, P.E. Stutzman, J. Tanesi, and J. Weiss, “Multi-scale investigation of the performance of limestone in concrete,” Construction and Building Materials 75, 1‒10 (2015).
  • [65] A.R. Mohamed, M. Elsalamawy, and M. Ragab, “Modeling the influence of limestone addition on cement hydration,” Alexandria Engineering Journal, 54(1), 1–5 (2015).
  • [66] L. Chaurasia, V. Bisht, L.P. Singh, and S. Gupta, “A novel approach of biomineralization for improving micro and macro-properties of concrete,” Construction and Building Materials, 195, 340–351 (2019).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59c047e5-7ba0-47c3-b8fb-3935d8e1c2ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.