PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Economic assessment of the Northern Copper Belt deposits : a future resource base of copper and silver ores in SW Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Seven undeveloped sediment-hosted stratiform Cu-Ag deposits constitute a future resource base of copper and silver ores in the Fore-Sudetic Monocline in SW Poland. Among these, four have only recently been discovered and documented: Nowa Sól, Sulmierzyce North, Mozów (forming a part of the Northern Copper Belt) and Żary. The three remaining deposits – Bytom Odrzański, Głogów and Retków – surround the currently mined New Copper District to the north-west, north and north-east. Polish Cu-Ag deposits are polymetallic: copper, silver, lead, nickel as well as subordinate rhenium and gold are currently extracted. However, they show high reporting of other by-product metals, such as cobalt, molybdenum, vanadium, zinc and rare earth elements.Unit ore values expressed in US dollars per metric ton of ore have been calculated for deposits in the Northern Copper Belt to compare them with other undeveloped and mined Polish sediment-hosted stratiform Cu-Ag deposits. The calculated unit ore values for the deposits studied are primarily influenced by copper, with a significant contribution (up to 29%) from silver. In terms of base metals other than copper, their contribution to the unit ore values is here relatively low, accounting for only 1–11% of the total value. The proportions of silver and lead in the unit ore value show a trend: they tend to be lower in the vicinity of oxidized fields and gradually increase with distance from these oxidized areas. The share of nickel in the unit ore value, on the other hand, is not influenced by distance from the oxidized fields. Instead, it is dependent on factors such as the thickness and organic content of the shale ore, which affect the accumulation of non-ferrous, redox-sensitive by-product metals, including nickel. Furthermore, we provide a comparative analysis of the total unit ore value among Polish sediment-hosted stratiform Cu-Ag deposits. Particular emphasis is placed on the deposits that constitute the future resource base of copper and silver ores in southwest Poland. A market perspective is drawn to highlight the influence of metal price fluctuations on the unit ore values of the various deposits. By examining the dynamic nature of metal prices, the study offers insights into how changes in market conditions can impact the economic viability of deposits located in different parts of the Fore-Sudetic Monocline. The deposits that constitute the future resource base of copper and silver in Poland show remarkably high copper and silver grades, resulting in significantly higher unit ore values compared to other world-class deposits of different types such as porphyry, epithermal, and IOCG (iron oxide copper gold) deposits.
Rocznik
Strony
art. no. 28
Opis fizyczny
Bibliogr. 62 poz., rys., tab., wykr.
Twórcy
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Ż̄wirki i Wigury 93, 02-089 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Ż̄wirki i Wigury 93, 02-089 Warszawa, Poland
  • Miedzi Copper Corporation, Aleje Jerozolimskie 96, 00-807 Warszawa, Poland
Bibliografia
  • 1. Anderson, C.S., 2022. U.S. Mineral Commodity Summaries - Silver. USGS, January 2022.
  • 2. AngloAmerican, 2021. Ore Reserves and Mineral Resources Report 2021. AngloAmerican.
  • 3. Artica, C., 2020. Cascabel Property NI 43-101 Technical Report, Alpala Mineral Resource Estimation, May 2020. Mining Plus.
  • 4. Banaś, M., Kijewski, P., Salamon, W., Pieczonka, J., Piestrzyński, A., 2007. Pierwiastki towarzyszące w złożu miedzi (in Polish). Monografia KGHM Polska Miedź S.A.(ed A. Piestrzyński): 214-228.
  • 5. Bieńko, T., Pietrzela, A., 2022. Trace element distribution and geochemical zonation in the world-class Nowa Sól sediment-hosted Cu-Ag deposit, SW Poland. Mineralium Deposita, 57: 827-851; https://doi.org/10.1007/s00126-022-01110-6
  • 6. Broughton, D.W., Rogers, T., 2010. Discovery of the Kamoa Copper District, Central African Copperbelt, D.R.C. Special Publications of the Society of Economic Geologists, 15: 287-297; https://doi.org/10.5382/SP.15.1.16
  • 7. Dushyantha, N., Batapola, N., Ilankoon, L.M.S.K., Rohitha, S., Premasiri, R., Abeysinghe, B., Ratnayake, N., Dissanayake, K., 2020. The story of rare earth elements (REEs): occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geology Reviews, 122: 103521; https://doi.org/10.1016/j.oregeorev.2020.103521
  • 8. European Commission, 2023. Study on Critical Raw Materials for the EU, 2023 - Final Report. European Union, Brussels.
  • 9. Flanegan, D.M., 2022. U.S. Mineral Commodity Summaries - Copper. USGS, January 2022.
  • 10. Fu, X., Beatty, D.N., Gaustad, G.G., Ceder, G., Roth, R., Kirchain, R.E., Bustamante, M., Babbitt, C., Olivetti, E.A., 2020. Perspectives on cobalt supply through 2030 in the face of changing demand. Environmental Science & Technology 54: 2985-2993. https://doi.org/10.1021/acs.est.9b04975
  • 11. Gibas, K., Borowski, K., Chmielewski, T., Wejman, K., 2015. Recovery of cobalt and nickel by atmospheric leaching of flotation sulfide concentrate from Lubin concentrator. Physicochemical Problems of Mineral Processing, 51: 191-203.
  • 12. Gulley, A.L., McCullough, E.A., Shedd, K.B., 2016. China's domestic and foreign influence in the global cobalt supply chain. Resources Policy, 62: 317-323; https://doi.org/10.1016/j.resourpol.2019.03.015
  • 13. Hitzman, M., Kirkham, R., Broughton, D., Thorson, J., Selley, D. 2005. The sediment-hosted stratiform copper ore system. Economic Geology - 100th Anniversary Volume: 609-642; https://doi.org/10.5382/AV100.19
  • 14. Joint Ore Reserves Committee (JORC), 2012. Australasian code for reporting of exploration results, mineral resources and ore reserves: The JORC code. Parkville, Victoria, Australia Australasian Institute of Mining and Metal lurgy (AusIMM), Minerals Council of Australia (MCA) and Australian Institute of Geoscientists (AIG).
  • 15. Jowitt, S.M., Mudd, G.M., Weng, Z., 2013. Hidden mineral deposits in Cu-dominated porphyry-skarn systems: how resource reporting can occlude important mineralization types within mining camps. Economic Geology, 108: 1185-1193; https://doi.org/10.2113/econgeo.108.5.1185
  • 16. Kelepile, T., Betsi, T.B., Franchi, F., Shameng, E., 2020. Partitioning and distribution of silver in sediment-hosted Cu-Ag deposits: Evidence from the Ghanzi-Chobe Belt portion of the Kalahari Copper Belt. Ore Geology Reviews, 124: 103663; https://doi.org/10.1016/j.oregeorev.2020.103663
  • 17. Kiersnowski, H., Peryt, T.M., Buniak, A., Mikołajewski, Z., 2010. From the intra-desert ridges to the marine carbonate island chain: middle to late Permian (Upper Rotliegend-Lower Zechstein) of the Wolsztyn-Pogorzela high, west Poland. Geological Journal, 44: 319-335; https://doi.org/10.1002/gj.1189
  • 18. Lewicka, E., Guzik, K., Galos, K., 2021. On the possibilities of critical raw materials production from the EU's primary sources. Resources, 10; https://doi.org/10.3390/resources10050050
  • 19. Mikulski, S., Oszczepalski, S., Sadłowska, K., Chmielewski, A., Małek, R., 2020. Trace element distributions in the Zn-Pb (Mississippi Valey-Type) and Cu-Ag (Kupferschiefer) sediment-hosted deposits in Poland. Minerals, 10, 75: 1-47; https://doi.org/10.3390/min10010075
  • 20. Mudd, G.M., 2010. Global trends and environmental issues in nickel mining: sulfides versus laterites. Ore Geology Reviews, 38: 9-26; https://doi.org/10.1016/j.oregeorev.2010.05.003
  • 21. Mudd, G.M., Jowitt, S.M., 2018. Growing global copper resources, reserves and production: discovery is not the only control on supply. Economic Geology, 113: 1235-1267; https://doi.org/10.5382/econgeo.2018.4590
  • 22. Mudd, G.M., Jowitt, S.M., 2022. The new century for nickel resources, reserves and mining: reassessing the sustainability of the devil's metal. Economic Geology, 117: 1961-1983; https://doi.org/10.5382/econgeo.4950
  • 23. Nieć, M., Sobczyk, E.J., 2017. Harmonization of Polish system of mineral resources reporting with JORC Code (in Polish with English summary). Górnictwo Odkrywkowe, 4: 38-41.
  • 24. Okada, K., 2022. Breakthrough technologies for mineral exploration. Mineral Economics, 35: 429-454; https://doi.org/0.1007/s13563-022-00317-3
  • 25. Oszczepalski, S., 1999. Origin of the Kupferschiefer polymetallic mineralization in Poland. Mineralium Deposita, 34: 599-613. Oszczepalski, S., 2017. The 60th anniversary of the discovery of the Lubin-Sieroszowice copper ore deposit - new perspective (in Polish with English summary). Przegląd Geologiczny, 65: 312-320.
  • 26. Oszczepalski, S., Chmielewski, A., 2015. Predicted metallic resources in Poland presented on the prospective maps at scale 1:200 000 - copper, silver, gold, platinum and palladium in the Kupferschiefer ore series (in Polish with English summary). Przegląd Geologiczny, 63: 534-545.
  • 27. Oszczepalski, S., Rydzewski, A., 1995. Zechstein polymetallic mineralization on the Żary Pericline (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 150: 1-34.
  • 28. Oszczepalski, S., Rydzewski, A., 1997. Metallogenic atlas of the Zechstein copper-bearing series in Poland. Polish Geological Institute.
  • 29. Oszczepalski, S., Speczik, S., Zieliński, K., Chmielewski, A., 2019. The Kupferschiefer deposits and prospects in SW Poland: past, present and future. Minerals, 9: 1-42; https://doi.org/10.3390/min9100592
  • 30. OZ Minerals, 2022. Carrapateena 2022 Mineral Resources and Ore Reserves Statement and Explanatory News as at 30 June 2022. OZ Minerals.
  • 31. Peng, L., Mei-feng, C.A.I., 2021. Challenges and new insights for exploitation of deep underground metal mineral resources. Transactions of Nonferrous Metals Society of China, 31: 3478-3505; https://doi.org/10.1016/S1003-6326(21)65744-8
  • 32. Peters, B., Seibel, G., Joughin, W., Treen, J., Phillips, M., Ruiter, G., 2020. Kamoa-Kakula 2020 Resource Update. OreWin Pty Ltd.
  • 33. Pieczonka, J., 2011. Factors controlling distribution of ore minerals within copper deposit, Fore-Sudetic Monocline, SW Poland (in Polish with English summary). Wydawnictwo AGH, Kraków, Poland.
  • 34. Pieczonka, J., Piestrzyński, A., Lenik, P., Czerw, H., 2007. Distribution of ore minerals in the copper deposit, Fore-Sudetic Monocline, SW Poland (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 423: 95-108.
  • 35. Piestrzyński, A., (ed.), 2007. Monografia KGHM Polska Miedź S.A (in Polish). Wydawnictwo Alexim, Wrocław, Poland.
  • 36. Piestrzyński, A., Pieczonka, J., Głuszek, A., 2002. Redbed-type gold mineralisation, Kupferschiefer, south-west Poland. Mineralium Deposita, 37: 512-528; https://doi.org/10.1007/s00126-002-0256-9
  • 37. Pietrzela, A., Bieńko, T., 2023. Comparison of main and accompanying metals distribution patterns in newly documented deposits of the Northern Copper Belt in Poland. Geochemistry: Exploration, Environment, Analysis, 2023; https://doi.org/10.1144/geochem2022-046
  • 38. Ranijth, P.G., Zhao, J., Ju, M., De Silva, R.V.S., Rathnaweera, T.D., Bandara, A.K.M.S., 2017. Opportunities and challenges in deep mining: a brief review. Engineering, 3: 546-551; https://doi.org/10.1016/J.ENG.2017.04.024
  • 39. Rentzsch, J., 1974. The Kupferschiefer in comparison with the deposits of the Zambia Copper Belt. Annales de la Société géologique de Belgique Publications spéciales - Gisements stratiformes et provinces cupriferes, 1974: 395-418.
  • 40. Rentzsch, J., Franzke, H.J., 1997. Regional tectonic control of the Kupferschiefer mineralization in the Central Europe. Zeitschrift für Geologische Wissenchaften, 25: 141-149.
  • 41. Salamon, W., 1979. Silver and molybdenum mineralization in Zechstein copper deposits, Fore-Sudetic Monocline, Poland (in Polish with English summary). Prace Mineralogiczne, 62: 1-56.
  • 42. Schmandt, D., Broughton, D., Hitzman, M.W., Plink-Bjorklund, P., Edwards, D., Humphrey, J., 2013. The Kamoa copper deposit, Democratic Re public of Congo: stratigraphy, diagenetic and hydrothermal alteration and mineralization. Economic Geology, 108: 1301-1324; https://doi.org/10.2113/econgeo.108.6.1301
  • 43. Schodde, R., 2014. The global shift to undercover exploration: How fast? How effective? Society of Economic Geologists 2014 Conference, Keynote, Colorado, September 30, 2014. Conference presentation; http://minexconsulting.com/the-global-shift-to-undercover-exploration-how-fast-how-effective/
  • 44. Schodde, R., 2020. Exploration trends - the current story for Canada. XPLOR 2020 Virtual Conference, The Quebec Mineral Exploration Association, 19th October 2020, Quebec. Conference presentation: https://minexconsulting.com/exploration-trends- the-current-story-for-canada/
  • 45. Simandl, G.J., 2014. Geology and market-dependent significance of rare earth element resources. Mineralium Deposita, 49: 889-904; https://doi.org 10.1007/s00126-014-0546-z
  • 46. Simpson, R., Batalov, A., Pattison, D., 2016.Technical Report for the Unkur copper-silver deposit, Kodar-Udokan area, Russian Federation. SRK Consulting.
  • 47. Speczik, S., 1994. Kupferschiefer mineralization in the light of organic geochemistry and coal petrology studies. Geological Quarterly, 38 (4): 639-650.
  • 48. Speczik, S., 1995. The Kupferschiefer mineralization of Central Europe: New aspects and major areas of future research. Ore Geology Reviews, 9: 411-426; https://doi.org/10.1016/0169-1368(94)00022-G
  • 49. Speczik, S., Dziewińska, L., Jóźwiak, W., Zieliński, K., 2020a. Application of historical geophysical materials in searching for Cu-Ag ore deposits - A new direction of research. Minerals, 10: 1-24; https://doi.org/10.3390/min10080725
  • 50. Speczik, S., Bieńko T., Pietrzela A., Zieliński K., 2020b. Documenting deep copper and silver deposits - investor's criteria (in Polish with English summary). Górnictwo Odkrywkowe, 61: 43-54.
  • 51. Speczik, S., Zieliński, K., Bieńko, T., Pietrzela, A., 2021. The prospecting strategy for a deep Cu-Ag ore deposits in Poland - an anatomy of success. Ore Geology Reviews, 131: 1-12; https://doi.org/10.1016/j.oregeorev.2021.104053
  • 52. Speczik, S., Szamałek, K., Wierchowiec, J., Zieliński, K., Pietrzela, A., Bieńko, T., 2022. The new Northern Copper Belt of south-western Poland: a summary. Acta Geologica Polonica, 72: 469-477; https://doi.org/10.24425/agp.2022.140435
  • 53. Szamałek, K., Wierchowiec, J., 2015. The meaning and role of the bankable feasibility study (BFS) as a basis for JORC mining projects' feasibility assessment of profitability evaluation (in Polish with English summary). Mineral Resources Management, 31: 25-44; https://doi.org/10.1515/gospo-2015-25
  • 54. Szuflicki, M., Malon, A., Tymiński, M., 2022. Bilans zasobów złóż kopalin w Polsce wg stanu na 31 XII 2021 r. (in Polish). Polish Geological Institute - National Research Institute, Warsaw, Poland.
  • 55. Weng, Z., Jowitt, S.M., Mudd, G.M., Gaque, N., 2015. A detailed assessment of global rare earth element resources: opportunities and challenges. Economic Geology, 110: 1925-1952; https://doi.org/10.2113/econgeo.110.8.1925
  • 56. Wodzicki, A., Piestrzyński, A., 1994. An ore genetic model for the Lubin-Sieroszowice mining district, Poland. Mineralium Deposita, 29: 30-43; https://doi.org/10.1007/BF03326394
  • 57. Wood, D., Hedenquist, J., 2019. Mineral exploration: discovering and defining ore deposits. SEG Discovery, 116: 1-22; https://doi.org/10.5382/Geo-and-Mining-02
  • 58. The World Bank Commodity Price Data. Retrieved 16th January 2023 from https://databank.worldbank.org/databases/commodity-price-data
  • 59. Zieliński, K., Bieńko, T., Wierchowiec, J., 2019. A dynamic model for polymetallic Zechstein mineralization based on the Milicz area of SW Poland. 15th Biennial Meeting of the Society for Geology Applied to Mineral Deposits 27-30 August 2019 “Life with Ore Deposits on Earth”, Glasgow: 1443-1446.
  • 60. Zieliński, K., Speczik, S., Bieńko, T., Pietrzela, A., 2021. Land management recommendations for protecting potential copper and silver mining areas in Lubuskie Province, western Poland. Mineral Resources Management, 37: 81-98; https://doi.org/10.24425/gsm.2021.136297
  • 61. Zientek, M.L., Chechetkin, V.S., Parks, H.L., Box, S.E., Briggs, D.A., Cossette, P.M., Dolgopolova, A., Hayes, T.S., Seltmann, R., Syusyura, B., Taylor, C.D., Wintzer, N.E., 2014. Assessment of undiscovered sandstone copper deposits of the Kodar-Udokan area, Russia. In: Zientek M.L., Hammarstrom J.M. and Johnson K.M. (eds.) Global Mineral Resource Assessment. Reston, Virginia, U.S. Geological Survey.
  • 62. Zientek, M.L., Oszczepalski, S., Parks, H.L., Bliss, J.D., Borg, G., Box, S.E., Denning, P.D., Hayes, T.S., Spieth, V., Taylor, C.D., 2015. Assessment of undiscovered copper resources associated with the Permian Kupferschiefer, Southern Permian Basin, Europe. In: Global Mineral Resource Assessment (eds. M.L. Zientek, J.M. Hammarstrom and K.M. Johnson). Reston, Virginia, U.S. Geological Survey.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59bf97e4-244b-494a-9227-8973ab336898
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.