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Abstract In this work, we consider a one-dimensional forward-forward model of
Mean-field Games with congestion. We establish a connection between such models
and conservation laws. Next, we show the existence of non trivial convex entropies.
Finally, we investigate the existence of solutions in the parabolic case and derived
some estimates thanks to the existence of such convex entropies.
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1. Introduction. Mean-Field Games (MFGs) provide a framework for
the study of a class of competitive games involving a large number of agents.
In these games, the agents are assumed indistinguishable and interact in a
mean-field manner so that each agent has a negligible effect on the outcome
of the games. Since the seminal work by ( , ) in
Mathematics and by Huang, Caines and Malhame in Engineering in 2006, the
theory has propagated to other fields of research including crowd dynamics,
economics, finance, biology ans social science (see |3, 22]). From a mathe-
matical perspective, MFGs, developed as limit of non cooperative games, are
captured by two important classes of PDEs: the Hamilton-Jacobi-Bellman
equations viewed as backward equations and the Fokker Planck equations
seen as forward equations. The Hamilton-Jacobi-Bellman equations express
the optimality of a value function in relation to a control problem. On the
other hand, the Fokker-Planck equations model the dynamics of the density
of the agents governed by a velocity field derived from the Hamiltonian of the
system. The coupling of these highly non-linear equations has since generated
a lot of interest and has been studied under various conditions and from var-
ious perspectives.

The existence and uniqueness of classical solutions for MFGs were inves-
tigated in [14, 15, 18, 20, 24]. There, the authors exploited structural forms of
the specific equations to obtain existence and uniqueness of solutions in the
presence of viscosity as well as in the absence of the viscosity. On the other
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hand, in |1, 5, 24, 26] the authors developed a concept of weak solutions. Fur-
thermore, stationary problems were considered in |12, 13, 17]. In these cases,
the monotonicity method has played an important role in solving the equa-
tions. In [10, 11] and in [3], the authors even constructed explicit solutions
to some Mean Field-Games problems. The articles [9, 16, 21| studied MFGs
designed to model congestion problems which incorporate the difficulty for
agents to move freely in areas with high density.

The one dimensional congestion problem can be stated as follows:

—ug + mH () = eugy + g(m)
my — (H’ (%) m)x = EMyy.

This system is supplemented by a terminal -initial conditions.

(2)

m(x,0) = mo(x).

{u(x, T) = up(x)

In the system (1), H : R — R denotes the Hamiltonian of the systems.
g : Ry — R is the coupling between the Hamiton-Jacobi equation and the
Fokker-Planck equations. « is the congestions parameter. For simplicity, we
consider the problem on a domain where the spatial variable x belongs to
the torus which we identify with [0, 1] while the temporal variable ¢ belongs
to the interval [0,7] where T > 0. The unknowns in the problems (1) and
(2) are w and m. u represents the value function for an optimal control prob-
lem that determines the Hamilton-Jacobi problem ; m stands for a density of
probability that describes the mean-field.

Mean-Field Games have been considered in the context of numerical meth-
ods [1]. In order to study the associated stationary problem from a numerical
point of view, it has been conjectured that the forward-forward model as time
goes to infinity will offer a good approximation to stationary states. Indeed,
the forward-forward models were introduced by [2] and [6] as a variant of
the standard Mean-Field Games originally with the hope that the long time
convergence of such models will yield solution to the stationary MFGs. The
forward-forward models take the following form:

up +mOH (22) = eugy + g(m) (3)
me — (H' (%) m),, = emas

with the nitial-initial conditions:

{u(x, 0) = uo(z)

m(z,0) = mo(z).
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Various techniques have been developed to study the forward-forward MFGs.
In [19], the authors used the entropy method to study the convergence of
the one-dimensional forward-forward MFGs. In [9], the entropy method was
adapted to study of the forward-forward congestion problem with no coupling
for the quadratic Hamiltonian.

In this paper we investigate (3) for a coupling function g which is nonzero.
More precisely, we will focus on the case where g is a non-increasing power
function of m. The strategy implemented here to deal with the forward-
forward problem is based on the relationship between the Hamilton-Jacobi
equation and the conservation laws in dimension one. The key result is the
identification of non trivial convex entropies.

The paper is organized in the following way. In section 1, we develop the
preliminary results. In section 2, we show how these MFGs can be transformed
into systems of one-dimensional conservation laws and we study important
features of these conservation laws. In section 4, we consider parabolic forward
forward MFGs and show short time existence of solution such MFGs equa-
tions. Besides, we exploit the existence of convex entropies to obtain some
estimates.

2. Preliminaries. In this section, we recall some definitions and a few
well-known results in the study of systems of conservation laws. For more
extensive explanation, we refer the readers to |7, 25]. We first recall the general
form for the equations of conservation laws:

w,+0,G(w)=0, z€R, t>0, w(t,z) €V, (5)

Here, V is an open set in R?, G : V — R is the flux-function which is
assumed differentiable on V. The function w = w (¢, x) : Ry xR — V is the
unknown in (5). We say that (7, q) is an entropy/entropy-fluzx for (5) if

Dn(w)DG(w) = Dg(w), (6)
for every w € V. For such entropy-entropy flux, we have the following identity:

n(w)e + (¢(w))z =0 (7)

for any smooth solution w of (5). In the context of conservation laws the con-
cept of hyperbolicity is important. We say that (5) is hyperbolic if the Jacobian
matrix DG(w) at each point w € V has two real eigenvalues \;(w), i =1,2.
We say that (5) is strictly hyperbolic if Aj(w) # Aa2(w) for each w € V.

3. Systems of conservation laws and first-order, forward-forward
MFGs. In this section, we consider the forward-forward MFGs with conges-
tion and a quadratic Hamiltonian. We further assume that the coupling g is
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a power function:
(8)

with @ > 0 and ¢ € R. Next, let us assume that the solutions of (8) are
smooth enough. We differentiate the first equation with respect to the spatial
variable x and set v = ¢ + u,. We are thus led to the following system of
conservation laws:
2
v —i—(”—a—kma) =0,
t 2m z (9)

my — (#)z =0.

3.1. Hyperbolicity. Now, we show that (9) is a hyperbolic, system of
conservation laws. The flux function associated with the conservation laws in
(9) is given by

2me

Glv,m) = ( v kma,m:1> (10)

for any (v, m) € R? with m > 0. To study the hyperbolicity of the equation
in (9), we compute the Jacobian of G and get

—Q

1
_ —14a _ = —1-«,,2
DG(v,m) = (m 1_1} akm M Y ) . (11)

—-m —(1—a)ym v
We define B as the set

B={(v,m)eR*:v>0, m>0}.

PROPOSITION 3.1 The system (9) is strictly hyperbolic on the set B. More
precisely, (11) has eigenvalues

1
— _ 2a _ 2),2
A = 5o (ow VAaakm?2e + (4 — 2a + a?)v ) (12)
and
Ay = 1 (om — V4akm2® 4+ (4 — 20 + a2)v2) (13)
2m>

with corresponding eigenvectors

ry = ((a —2) v+ /4ka m2> + (4 — 20 + a?) v2, Qm) (14)

and

ro = ((a—2)v—\/4ka m2® + (4 — 2a+ a?) v2, 2m> . (15)
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PROOF The characteristic equation of DF (v, m) is given by
X2 —am *vX 4 ak 4+ 1/2(=2 4+ a)m2“v* =0

Simple computations show that DF has eigenvalues given by (12) and
(13), and that these eigenvalues are distinct on B. Thus, (9) is a strictly
hyperbolic system of conservation laws on the set B. Next, we find the right
eigenvectors corresponding to A; and As. Accordingly, we determine r;, ¢ =
1,2, such that

DGTI'Z' == )\zrz
Again, straightforward computations ensure that ri, ro can be chosen as in
(14) and (15). u

3.2. Existence of convex entropies. First, we construct entropies for
(9). We recall that (7, q) is an entropy/entropy-flux pair for (9) if

DnDG = Dq. (16)

In the case of problem (9), we recall that the flux function is given by (10). A
direct computation shows that 7 solves (16) if and only if it satisfies a certain
second order partial differential equation. This is the object of the next lemma.

LEMMA 3.2 The entropies n of the system of conservation laws (9) satisfy
the following equation:

a(2km>® + v?) 1 (2—a)v
T et e T gt e e Thom = 0. (17)

PROOF Let (7, q) be an entropy/ entropy-flux for (9). We note that
n(v,m); + q(v,m)y = ANV + Oy + Opquy + Omqmy.

By using the system (9), we obtain that

'U2 v
77(@7 m)t + Q(’Ua m)x = Oy7 (kma - 2ma>x + 8m77 (W)x + 81;(]?133 + 8mqmm

2
_ Vv av
= Oy <kama lmx — miozz‘ + me)
v 1—a)v
+ Omn < ax_l + ( a) ma:) + 0uqUyz + Opmqmy
m m

By collecting the terms in v, and m,, we obtain that
2

v (1—a)v
St 0o+ T O + 8mQ) e

n ( 8m77 v 8Un+8vq> v

nwmm+«umu=<wmmw*+

mafl me

(18)
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As (n,q) is an entropy/entropy-fluz for (5) we have that n(v, m);+q(v,m); =
0. In light of (18), this equation implies that

I
g = — (—&mﬂja + >

ma—l

and

2

1_
Omq = — [ kam®10,n + dyn av + ( O‘)U.amn .
2motl mo

It follows that

2 _
O <—6‘m7;:a 4 O ) _ o, (kama—lavm o0+ U O‘)“amn> .

ma—1 motl me
Thus,
= </<:ama1 + 2:;;:) a5.m
b0+ W Lo
Therefore,

2
_ av (2—a) 1
(’mma L+ 2ma+1> Ol " Ot = — O = 0.

In the next proposition, we investigate the existence of entropies and de-
termine conditions under which these entropies are convex.

PROPOSITION 3.3 The equation (17) has solutions of the form :

P(v)
mbB

n(v,m) = Q(m) + (19)

where P(v) = av? and Q"(m) = mgﬁi’ggﬂ for any a > 0 and B such that
B2+ (5—2a)83+a=0.
PROOF Assume 7 has the following form:

P(v)
mB

n(m,v) = Q(m) +
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We have that

Omn = Q/(m) - /B’r]:/g’i)l and  9yn = Pqn(;)) :

We further compute the second partial derivatives

P Pl/ Pl
8mmﬁ = Q”(m) + 6(5 + 1)méﬁ)2 81)1)77 = m(;}) and avmn = _/Bm;fi .

a(2km?® + v?) (P”(v)> 1

2matl m,B mo—1

(@”(m) BB+ 1) nféﬁl)
L, C-ap <_BP/(U)> Y

me mb+1
That is,
P/l ) P
a(2km? 4 v?) < m(ﬁ”)) — 2m? <Q (m) + B(B+ 1)m/(3?2> )
+2m(2 — a)v <—6i§2> =0.
We rearrange the (20) to obtain
—om2Q"(m) - 28(8 + 1) — 22 — a) T L)
" B (21)
+ a (2km® + v?) Pm(;) =0
The equation (21) can be rewritten as
2m? PQ" (m) + 26(5 + DP() +2(2 ~ )P (2 )

— o (2km** +v?) P"(v) = 0.
Assume P is of the form P(v) = av?. Then, (22) becomes
2mP2Q" (m) + 28(8 + 1)(av?) + 2(2 — @) Bv(2av) — 2a (2km** + v*) a = 0.
In other words,
2mPr2Q" (m) — daakm®® + [2aB(8 + 1) + 2a(4 — 22) — 2aa]v® = 0.
That is,
2mP2Q" (m) — daakm®® + 2a[6% + (5 — 2a)8 — av? = 0.

As a > 0, we have that (5 — 2a)? + 4a > 0 and so, we choose 3 such that
8%+ (5 — 20)3 + o = 0. Then, Q"(m) = —3%%. -
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In the next proposition, we investigate the convexity of the entropies ex-
hibited in the previous proposition. As seen later, the convexity of the en-
tropies provides useful information on the viscosity problems.

PROPOSITION 3.4 There exists g > 0 such that whenever 0 < o < €q, the
functions defined by

CL’l)2

n(v,m) = Q(m) + ooy a >0, (23)

where Q" (m) = mgf’;S‘H with B2 4+ (5 — 2a)B — a = 0, are strictly convex.

PrROOF We compute the Hessian of the function #:

aB(B + 1)v? 2a8v

Q" (m) + —

2 _ B+2 B+1

D*n(m,v) = 2aﬁ@n . . (24)
 mbtl mp

The determinant of the Hessian of D?n(m,v) is given by

2a aB(B + 1)v? 2a3v \?
2
det (D%(m, v)) = mP (Q”(m) trrr ) T\ A
— 27&@”(771) + 2a*8(8 + 1)v? . 4a*B*v?
- m,B m25+2 m2,8+2 (25)
_ 2a ., 2026202 + 2a2pv?  4a?B0?
= WQ (m) m2B+2 T 2Bt
2a , 2a26(1 — B)v?
= M
We note that
— 2 25 —1 402
By = Bu(a) = 5+ 2a+ V25 — 16a + 4a

2
satisfies 82 + (5 — 2a)B8 — a = 0. Moreover, 1 > 0 and 31(a) converges to

zero when a goes to zero. As a consequence, there exists eg > 0 such that
Bi(a) (1 — Fi(e)) > 0 whenever 0 < o < €p. In light of (25), it results that

1 2
det (D?*n(m,v)) > 0 for all 0 < a < €. As Q"(m) + W

conclude that the Hessian of 7 is positive definite. Consequently, 7 is strictly

> 0, we

convex. n

4. Parabolic forward-forward with congestion. The parabolic ver-
sion of the forward-forward MFG with congestion can be expressed in similar
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way to the non parabolic problem described above and as follows:
v + (2;;1—2& + kmo‘) = Vg,
my — (#)x = EMgy,
with € > 0 and initial conditions

{U(:E, 0) = vo(x)

m(z,0) = mo(z). (27)

We assume that (vg,mg) is smooth and takes values in a compact subset,
C C B. We recall that

B={(v,m) €R*:v >0, m>0}.

In the previous paragraph, we have shown the existence on convex en-
tropies for (26) in the absence of viscosity. In this framework, standard the-
orems in conservation laws theory ensures the existence of unique classical
solutions (v¢, m®) for (26)-(27) on T} x [0, Tx) for some 0 < Ty, < 00.

REMARK 4.1 For smooth initial conditions, the short time existence of solu-
tions in (26) implies the short time existence of a solution in the corresponding
MFGs with congestion:

{Ut + L;ZZ)Q = km® + euyy,

my — (::;Lizl)x = &My

(28)

The existence of long time solutions in (26) requires that the density m
stays positive for all time. The following proposition provides a bound on the
solutions of (26) for a class of entropies and is the first step in the attempt
to establish such results.

PROPOSITION 4.2 Let (v¢,m®) be the classical solution for (26). Then, for
any entropy n, we have

d
G [t meyde = ¢ [ (@i mE) DA m) ek i, (29
T T
As a consequence, for conver entropies as in (19), we have
(v°)? (v5)?
I3 & P
/TQ(m )+ a(me)ﬁdx < TQ(mo) + a(mg)ﬁ dx =: cp. (30)

Here, Q, a and B are defined in proposition 3.4.

PROOF The equality is straightforward using (26). Assume 7 is a convex
entropy as in lemma 3.4. Then, D?n is positive definite so that the right hand
side of (29) is non positive. It follows that ¢t — [ 7(v®, m®)dx is decreasing.
As a result, [rn(v",m®)dx < [pn(v, m§)de which yields (30). n
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O modelach gier usrednionego oddzialywania z zarzadzaniem.
Marc Sedjro

Abstract Praca poswiecona jest jednowymiarowym modelom gier z usrednionym
oddzialywaniem w zarzadzaniu. Takie badania maja na celu analize podejmowa-
nia strategicznych decyzji przez czynniki malo oddzialywajace w bardzo duzych
populacjach. Ustalany jest zwiazek miedzy takimi modelami a prawami zachowa-
nia. W wyniku tych badan pokazano istnienie nietrywialnych entropii wypuktych.
W koncowej czeSci badane jest istnienie rozwiazan w przypadku parabolicznym i
wyprowadzane sa pewne oszacowania z istnienia takich wypuklych entropii.
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