PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aluminium Alloys Smelting in Shaft- Reverberatory Furnaces in a Liquid Bath Mode

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of research was creation of a furnace for aluminum alloys smelting “in a liquid bath” in order to reduce metal loss. In the paper, the author demonstrates the results of research on smelting of aluminum alloys in a shaft-reverberatory furnace designed by the author. It has been shown that smelting aluminum alloy in a liquid bath was able to significantly reduce aluminum loss and that shaft-reverberatory design provided high efficiency and productivity along with lower energy costs. Ensuring continuous operation of the liquid bath and superheating chamber, which tapped alloy with the required texture, was achieved by means of the optimal design of partition between them. The optimum section of the connecting channels between the liquid bath of smelting and the superheating chamber has been theoretically substantiated and experimentally confirmed. The author proposed a workable shaft-reverberatory furnace for aluminum alloys smelting, providing solid charge melting in a liquid bath.
Rocznik
Strony
183--189
Opis fizyczny
Bibliogr. 19 poz., il., rys., tab., wzory
Twórcy
autor
  • A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, 29 Bldg 1, Bolshaya Ordynka St., Suite 104, 119017 Moscow, Russia
Bibliografia
  • [1] Morgunov, V.N. (2009). Foundry Furnaces: Characteristics, analysis, and classification. Penza: Penza State University Publishing.
  • [2] Markmet Metallurgy. (2005). Technological characteristics of non-ferrous metals and alloys smelting in electric furnaces. Retrieved December 15, 2016, from http://markmet.ru/tehnologiya_metallov/tekhnologicheskie-osobennosti-plavki-tsvetnykh-metallov-i-splavov-v-elektropech.
  • [3] Grachev, V.A., Golubyatnikov, M.I., Morgunov, V.N., Terekhov, V.S., Ignatiev, A.A. (1982). USSR certificate of authorship No. 972202. Shaft furnace for smelting aluminum alloys. Moscow: State Committee for Inventions and Discoveries.
  • [4] Postnikov, I.S., Cherkasov, V.V. (1973). Advanced methods of aluminum alloys smelting and casting. Moscow: Metallurgiya.
  • [5] Andreev, A.D., Gogin, V.B., Makarov, G.S. (1980). High-productive smelting of aluminum alloys. Moscow: Metallurgiya.
  • [6] Lepinskikh, B.M., Kitaev, A.A., Belousov, A.A. (1979). Oxidation of liquid metals and alloys. Moscow: Nauka.
  • [7] Dudoladov, A.O., Buryakovskaya, O.A., Vlaskin, M.S., Zhuk, A.Z. & Shkolnikov, E.I. (2015). Experimental study on low-temperature aluminium oxidation process accompanied by generation of hydrogen. International Scientific Journal for Alternative Energy and Ecology. 21, 112-120. DOI: 10.15518/isjaee.2015.21.013.
  • [8] Kleymenov, B.V., Mazalov, Yu.A., Bersh, A.V. & Nizovtsev, V.E. (2005). Prospects for the hydrogen energy development based on aluminum. INFORMOST radioelectronics and telecommunication. 2(38), 62-64.
  • [9] Alinejad, B. & Mahmoodi, K. (2009). A novel method for generating hydrogen by hydrolysis of highly activated aluminum nanoparticles in pure water. International Journal of Hydrogen Energy. 34, 7934-7938.
  • [10] Mahmoodi, K. & Alinejad, B. (2010). Enhancement of hydrogen generation rate in reaction of aluminum with water. International Journal of Hydrogen Energy. 35, 5227-5232.
  • [11] Huang, X., Gao, T., Pan, X., Wei, D., Lv, C., Qin, L. & Huang, Y. (2013). A Review: Feasibility of hydrogen generation from the reaction between aluminum and water for fuel cell applications. Journal of Power Sources. 229, 133-140.
  • [12] Parmuzina, A.V. & Kravchenko, O.V. (2008). Activation of aluminium metal to evolve hydrogen from water. International Journal of Hydrogen Energy. 33, 3073-3076.
  • [13] Ilyukhina, A.V., Ilyukhin, A.S. & Shkolnikov, E.I. (2012). Hydrogen generation from water by means of activated aluminium. International Journal of Hydrogen Energy. 37, 16382-16387.
  • [14] Rosenband, V. & Gany, A. (2010). Application of activated aluminum powder for generation of hydrogen from water. International Journal of Hydrogen Energy. 35, 10898-10904.
  • [15] Sinyavsky, V.S., Ustiyantsev, V.U. (1976). Corrosion protection of aluminum-alloy drill pipes. Moscow: Nedra.
  • [16] Putilova, I.N., Balezin, S.A., Barannik, V.P. (1958). Metal corrosion inhibitors. Moscow: Goskhimizdat.
  • [17] Shchukin, E.D. (1970). The Rehbinder Effect. In R. Bazurin, V. Bardin, K. Guseva, G. Kremneva (Eds.) International Yearbook "Science and Humanity" (pp. 337-367). Moscow: Znanie.
  • [18] Korotkikh, A.G., Ionova, I.A., Karpovich, M.K. (2012). Research on the kinetics of oxidation and combustion of aluminum powders. In 18th International Research and Practice Conference for Students, Postgraduates, and Young Scientists, 9-13 April 2012 (pp. 359-360). Tomsk, Russia: Tomsk Polytechnic University.
  • [19] Ohkura, Y., Rao, P.M. & Zheng, X. (2011). Flash ignition of Al nanoparticles: Mechanism and applications. Combustion and Flame. 158, 2544-2548.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59bad63f-f825-4d74-a4e2-16e6fbe14109
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.