Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, the frequency characteristics of the forces and torques in the various cycloidal gearbox designs were investigated. The aim of the article is the search for frequency patterns that could be used in the formulation of a fault diagnosis methodology. Numerical analysis was performed in the cycloidal gearbox without defects as well as in cycloidal gearboxes with lobe defects or with removed lobes. The results of the numerical analysis were obtained in the multibody dynamics model of the cycloidal gearbox, implemented in Fortran and using the 2nd-order Runge-Kutta method for the integration of the motion equations. The used model is planar and uses Hunt and Crossley’s nonlinear contact modelling algorithm, which was modified using the Heaviside function and backlash to fit cycloidal gearbox model convergence demands. In the analysis of fault diagnosis methods, the coherence function and Morris minimum-bandwidth wavelets were used. It is difficult to find a unique pattern in the results to use in the fault diagnosis because of the random characteristics of the torques at the input and output shafts. Based on obtained results, a promising, low-vibration cycloidal gearbox design with removed 7 lobes of the single wheel was studied using the FFT algorithm.
Wydawca
Czasopismo
Rocznik
Tom
Strony
409--431
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Poland
Bibliografia
- [1] Y. Fu, X. Chen, Y. Liu, C. Son, and Y. Yang. Gearbox fault diagnosis based on multi-sensor and multi-channel decision-level fusion based on SDP. Applied Sciences, 12(15):7535, 2022. doi: 10.3390/app12157535.
- [2] F. Xie, H. Liu, J. Dong, G. Wang, L. Wang, and G. Li. Research on the gearbox fault diagnosis method based on multi-model feature fusion. Machines, 10(12):1186, 2022. doi: 10.3390/machines10121186.
- [3] I. Komorska, K. Olejarczyk, A. Puchalski, M. Wikło, and Z. Wołczyński. Fault diagnosing of cycloidal gear reducer using statistical features of vibration signal and multifractal spectra. Sensors, 23(3):1645, 2023. doi: 10.3390/s23031645.
- [4] R. Król. Analysis of the backlash in the single stage cycloidal gearbox. Archive of Mechanical Engineering, 69(4):693–711, 2022. doi: 10.24425/ame.2022.141521.
- [5] R. Król. Resonance phenomenon in the single stage cycloidal gearbox. Analysis of vibrations at the output shaft as a function of the external sleeves stiffness. Archive of Mechanical Engineering, 68(3):303–320, 2021. doi: 10.24425/ame.2021.137050.
- [6] R. Król and K. Król. Multibody dynamics model of the cycloidal gearbox, implemented in Fortran for analysis of dynamic parameters influenced by the backlash as a design tolerance. Acta Mechanica et Automatica, 17(2):272–280, 2023. doi: 10.2478/ama-2023-0031.
- [7] R. Król. Cycloidal gearbox model for transient analysis implemented in Fortran with constant time step 2nd order integrator. In: A. Puchalski, B.E. Łazarz, F. Chaari, I. Komorska, Z. Zimroz (eds) Advances in Technical Diagnostics II. ICTD 2022. Applied Condition Monitoring, pp. 63–74, vol. 21. Springer, Cham 2023. doi: 10.1007/978-3-031-31719-4_7.
- [8] R. Król. Software for the cycloidal gearbox multibody dynamics analysis, implemented in Fortran. (Purpose: presentation of the results in the scientific article), 2023. doi: 10.5281/ZENODO.7729842.
- [9] R. Król. Kinematics and dynamics of the two stage cycloidal gearbox. AUTOBUSY – Technika, Eksploatacja, Systemy Transportowe, . 19(6):523–527, 2018. doi: 10.24136/atest.2018.125.
- [10] K.S. Lin, K. Y. Chan, and J. J. Lee. Kinematic error analysis and tolerance allocation of cycloidal gear reducers. Mechanism and Machine Theory, 124:73–91, 2018. doi: 10.1016/j.mechmachtheory.2017.12.028.
- [11] L.X. Xu, B.K. Chen, and C.Y. Li. Dynamic modelling and contact analysis of bearing-cycloid-pinwheel transmission mechanisms used in joint rotate vector reducers. Mechanism and Machine Theory, 137:432–458, 2019. doi: 10.1016/j.mechmachtheory.2019.03.035.
- [12] Y. Li, K. Feng, X. Liang, and M.J. Zuo. A fault diagnosis method for planetary gearboxes under non-stationary working conditions using improved Vold-Kalman filter and multi-scale sample entropy. Journal of Sound and Vibration, 439:271–286, 2019. doi: 10.1016/j.jsv.2018.09.054.
- [13] S. Schmidt, P.S. Heyns, and J.P. de Villiers. A novelty detection diagnostic methodology for gearboxes operating under fluctuating operating conditions using probabilistic techniques. Mechanical Systems and Signal Processing, 100:152–166, 2018. doi: 10.1016/j.ymssp.2017.07.032.
- [14] Y. Lei, D. Han, J. Lin, and Z. He. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method. Mechanical Systems and Signal Processing, 38(1):113–124, 2013. doi: 10.1016/j.ymssp.2012.06.021.
- [15] Y. Chen, X. Liang, and M. . Zuo. Sparse time series modeling of the baseline vibration from a gearbox under time-varying speed condition. Mechanical Systems and Signal Processing, 134:106342, 2019. doi: 10.1016/j.ymssp.2019.106342.
- [16] G. D’Elia, E. Mucchi, and M. Cocconcelli. On the identification of the angular position of gears for the diagnostics of planetary gearboxes. Mechanical Systems and Signal Processing, 83:305–320, 2017. doi: 10.1016/j.ymssp.2016.06.016.
- [17] X. Chen and Z. Feng. Time-frequency space vector modulus analysis of motor current for planetary gearbox fault diagnosis under variable speed conditions. Mechanical Systems and Signal Processing, 121:636–654, 2019. doi: 10.1016/j.ymssp.2018.11.049.
- [18] S. Schmidt, P.S. Heyns, and K.C. Gryllias. A methodology using the spectral coherence and healthy historical data to perform gearbox fault diagnosis under varying operating conditions. Applied Acoustics, 158:107038, 2020. doi: 10.1016/j.apacoust.2019.107038.
- [19] D. Zhang and D. Yu. Multi-fault diagnosis of gearbox based on resonance-based signal sparse decomposition and comb filter. Measurement, 103:361–369, 2017. doi: 10.1016/j.measurement.2017.03.006.
- [20] C. Wang, H. Li, J. Ou, R. Hu, S. Hu, and A. Liu. Identification of planetary gearbox weak compound fault based on parallel dual-parameter optimized resonance sparse decomposition and improved MOMEDA. Measurement, 165:108079, 2020. doi: 10.1016/j.measurement.2020.108079.
- [21] W. Teng, X. Ding, H. Cheng, C. Han, Y. Liu, and H. Mu. Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform. Renewable Energy, 136:393–402, 2019. doi: 10.1016/j.renene.2018.12.094.
- [22] D. Abboud, S. Baudin, J. Antoni, D. Rémond, M. Eltabach, and O. Sauvage. The spectral analysis of cyclo-non-stationary signals. Mechanical Systems and Signal Processing, 75:280–300, 2016. doi: 10.1016/j.ymssp.2015.09.034.
- [23] J.M. Morris and R. Peravali. Minimum-bandwidth discrete-time wavelets, Signal Processing, vol. 76, no. 2, pp. 181–193, 1999. doi: 10.1016/S0165-1684(99)00007-9.
- [24] R. Król. Software for the cycloidal gearbox multibody dynamics analysis, implemented in Fortran. (Purpose: presentation of the results in the scientific article), 2022. doi: 10.5281/ZENODO.7221146.
- [25] P. Flores and H.M. Lankarani. Contact Force Models for Multibody Dynamics, vol. 226, Springer, 2016. doi: 10.1007/978-3-319-30897-5.
- [26] MATLAB documentation, https://www.mathworks.com/help/signal/ref/mscohere.html.
- [27] MATLAB documentation, https://www.mathworks.com/help/wavelet/ug/wavelet-families-additional-discussion.html.
- [28] X. Shi and A.A. Polycarpou. Measurement and modeling of normal contact stiffness and contact damping at the meso scale. Journal of Vibration and Acoustics, 127(1):52–60, 2005. doi: 10.1115/1.1857920.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59ba0679-2011-4a89-bdc4-935bbe5ffe07