PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variability of mercury speciation forms in soil exposed to wastewater from oleochemical production

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zmienność form specjacyjnych rtęci w glebie poddanej działaniu ścieków z produkcji oleochemicznej
Konferencja
ECOpole’13 Conference (23-26.10.2013, Jarnoltowek, Poland)
Języki publikacji
EN
Abstrakty
EN
The results of four-year research concerning variability of mercury speciation forms, contained in soil, subject to treated wastewaters from low-tonnage oleochemical production were analyzed in this paper. Doses of sewage directed to experimental patches were limited by total nitrogen concentration, with the total doses not exceeding the limit of 170 kg · (ha · year)–1. Every year, the experimental patches were sown with plants; in the subsequent years these were: oats, rape, triticale and mustard. Then, the plants were put into soil as green fertilizers in the whole weight. After an analysis of the fractional composition in soil samples handled with treated wastewater in the experimental period, a gradual decline of the exchangeable fractions was found. Moreover, an increase of the fraction connected with carbonates and stability of the fraction connected with hydrous iron and manganese oxides and the so-called organic connections fraction, and remaining fraction was found.
PL
Przedstawiono wyniki czteroletnich badań nad zmiennością form specjacyjnych rtęci oznaczanej w glebie poddanej działaniu podczyszczonych ścieków z mało tonażowej produkcji oleochemicznej. Dawki ścieków kierowanych na poletka doświadczalne limitowano stężeniem azotu ogółem, w łącznych porcjach nieprzekraczających granicznej ilości 170 kg · (ha · rok)–1. Poletka doświadczalne corocznie były obsiewane roślinnością, w kolejnych latach: owsem, rzepakiem, pszenżytem i gorczycą, które w formie zielonego nawozu były w całej masie wprowadzane do gleb. Analizując w okresie doświadczalnym skład frakcyjny w próbkach gleby traktowanej ściekami podczyszczonymi, stwierdzono sukcesywny spadek zawartości frakcji wymywalnej, natomiast wzrost frakcji związanej z formami węglanowymi oraz stabilność frakcji związanej z uwodnionymi tlenkami żelaza i manganu oraz frakcji tzw. połączeń organicznych i pozostałej.
Rocznik
Strony
503--509
Opis fizyczny
Bibliogr. 22 poz., wykr., tab.
Twórcy
  • Department of Chemical Technology and Engineering, University of Technology and Life Sciences, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland
Bibliografia
  • [1] Regulation of the Minister of the Environment of 24 July 2006 on required quality standards for introducing sewage to water or soil and on extremely hazardous substances for the water environment (Journal of Laws 2006, No. 137, item 984) [in Polish].
  • [2] Żak S, Rauckyte T. Analysis of heavy metal contents in soil irrigated and fertilized with wastewaters from animal fats production. Ecol Chem Eng A. 2008;15(4-5):451.
  • [3] Rauckyte T, Żak S, Pawlak Z. Research on heavy metal contents in soils used for utilization of wastewater from vegetable fats production. Ecol Chem Eng A. 2008;15(4-5):405.
  • [4] Żak S, Rauckyte T. Research on the contents of heavy metals in soils subjected to many-year agroutilization of wastewaters from low tonnage oleochemical production. Ecol Chem Eng A. 2008;15(9):997.
  • [5] Żak S, Rauckyte-Żak T, Laurinavičius A. The influence of treated oleo-chemical wastewater applications on the metal speciation forms in soils. J Environ Eng Landsc Mang. 2013;21(2):85-95. DOI: 10.3846/16486897.2013.773259.
  • [6] Lepp NW. Effects of heavy metals pollution in plants. In: Effects of heavy metals on plant function. Lepp NW, editor. London: Applied Science Publishers; 1981;1:111-143.
  • [7] Rattan RK, Datta SP, Chhonkar PK, Suribabu K, Singh A. K. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater - a case study. Agr Ecosys Environ. 2005;109(3-4):310-322. DOI: 10.1016/j.agee.2005.02.025.
  • [8] Russell JM, Cooper RN, Lindsey SB. Soil denitrification rates at wastewater irrigation sites receiving primary-treated and anaerobically treated meat-processing effluent. Biores Technol. 1993;43(1):41-46. DOI: 10.1016/0960-8524(93)90080-U.
  • [9] Luo J, Lindsey S, Xue J. Irrigation of meat processing wastewater onto land. Agr Ecosyst Environ. 2004;103(1):123-148. DOI: 10.1016/j.agee.2003.10.008.
  • [10] Lassat MM. Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual. 2002;31(1):109-120. DOI: 10.2134/jeq2002.1090.
  • [11] Manz M, Weissflog L, Kühne R, Schürmann G. Ecotoxicological hazard and risk assessment of heavy metal contents in agricultural of central Germany. Ecotox Environ Safe. 1999;42(2):191-201. DOI: 10.1006/eesa.1998.1741.
  • [12] Paredes MJ, Monteoliva-Sanchez M, Moreno E, Perez J, Ramos-Cormenzana A, Martinez J. Effect of waste waters from olive oil extraction plants on the bacterial population of soil. Chemosphere. 1986;15(5):659-664. DOI: 10.1016/0045-6535(86)90015-9.
  • [13] Paredes MJ, Moreno E, Ramos-Cormenzana A, Martinez J. Characteristics of soil after pollution with waste waters from olive oil extraction plants. Chemosphere. 1987;16(7):1557-1567. DOI: 10.1016/0045-6535(87)90096-8.
  • [14] Mapanda F, Mangwayana EN, Nyamangara J, Giller KE. The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe. Agr Ecosyst Environ. 2005;107(2-3):151-165. DOI: 10.1016/j.agee.2004.11.005.
  • [15] Tardioli S, Bànnè ETG, Santori F. Species-specific selection on soil fungal population after olive mill wastewater treatment. Chemosphere. 1997;34(11):2329-2336. DOI: 10.1016/S0045-6535(97)00044-1.
  • [16] Ziolko D, Martin OV, Scrimshaw MD, Lester NJ. An evaluation of metal removal during wastewater treatment: The potential to achieve more stringent final effluent standards. Crit Rev Env Sci Tec. 2011;41(8):733-769. DOI: 10.1080/10643380903140299.
  • [17] Marcinkonis S, Karmaza B, Booth CA. Geochemistry of freshwater calcareous sediments and longevity impacts of their application to acidic soils of eastern Lithuania. J Environ Eng Landsc Mang. 2012;20(4):285-291. DOI: 10.3846/16486897.2012.656646.
  • [18] IUSS Working Group WRB. 2006. World reference base for soil resources 2006.World Soil Resources Reports No. 103. Rome: FAO.
  • [19] Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 1979;51(7):844-851. DOI: 10.1021/ac50043a017.
  • [20] Frohne T, Rinklebe J. Biogeochemical fractions of mercury in soil profiles of two different floodplain ecosystems in Germany. Water Air Soil Pollut. 2013;224:1591. DOI: 10.1007/s11270-013-1591-4.
  • [21] Fernández-Martínez R, Loredo J, Ordóñez A, Rucandio MI. Physicochemical characterization and mercury speciation of particle-size soil fractions from an abandoned mining area in Mieres, Asturias (Spain). Environ Pollut. 2006;142(2):217-226. DOI: 10.1016/j.envpol.2005.10.034.
  • [22] Rothenberg SE, Feng X. Mercury cycling in a flooded rice paddy. J. Geophys Res. 2012;117(G3):G03003. DOI: 10.1029/2011JG001800.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59a4dbc4-5225-42d6-9496-aa66d7df6ba3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.