PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing the possibilities in visualisation of the ferroresonance phenomenon

Treść / Zawartość
Warianty tytułu
Konferencja
Computer Applications in Electrical Engineering (15-16.04.2019 ; Poznań, Polska)
Języki publikacji
EN
Abstrakty
EN
Waveforms measured and recorded in a ferroresonant circuit are the base for many computations, including simulation of ferroresonance circuit over - current/voltage responses and modelling a nonlinear coil. During such a study of ferroresonance phenomenon, the time dependent nonlinear differential equations are derived from R – Ψ(i) – C ferroresonant circuit. The system of nonlinear equations is numerically solved using various algorithm applications. In applied mathematics, in particular the context of the nonlinear dynamical systems analysis, phase – plane/space graphs are a visual display of certain characteristics of kinds of differential equations. The aim of the paper is a full plane/space presentation of all possible states of a test circuit when the ferroresonance occurs. Poincare maps application is also mentioned in the paper.
Rocznik
Tom
Strony
115--124
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Silesian University of Technology
  • Silesian University of Technology
Bibliografia
  • [1] IEEE working group on modeling and analysis of systems transients, Modeling and analysis guidelines for slow transients - part III: the study of ferroresonance. IEEE transactions on power delivery, Vol. 15, Issue 1, 2000, pp. 255–265.
  • [2] Corea-Araujo J.A., Gonzalez-Molina F., Martinez-Velasco J.A., Barrado-Rodrigo J.A., Guasch-Pesquer L., Tools for Characterization and Assessment of Ferroresonance Using 3-D Bifurcation Diagrams. IEEE Transactions on Power Delivery, Vol. 29, No. 6, 2014, pp. 2543-2551.
  • [3] Jacobson D.A.N., Examples of Ferroresonance in a High Voltage Power System. IEEE, Power Engineering Society General Meeting, 2003, DOI: 10.1109/PES.2003.1270499 8.
  • [4] Valverde V., Buigues G., Mazón A.J., Zamora I., Albizu I., Ferroresonant Configurations in Power Systems. International Conference on Renewable Energies and Power Quality (ICREPQ’12), Vol. 1, No. 10, Santiago de Compostela, Spain, 2012, https://doi.org/10.24084/repqj10.351 474 RE&PQJ.
  • [5] Ferracci Ph., Ferroresonance. Schneider-electric technical book, No. 190, Schneider's Group Technical collection, 1998.
  • [6] Majka Ł., Applying a fractional coil model for power system ferroresonance analysis. Bull. Pol. Ac.: Tech. 66 (4), 467-474, 2018.
  • [7] Seker S., Akinci T.C., Taskin S., Spectral and statistical analysis for ferroresonance phenomenon in electric power systems. Electrical Engineering, Vol. 94, Issue 2, 2012, pp. 117–124 12.
  • [8] Milicevic K., Nyarko E.K., Biondic I., Chua’s model of nonlinear coil in a ferroresonant circuit obtained using Dommel’s method and grey box modeling approach. Nonlinear Dyn. 86, 2016, pp. 51–63.
  • [9] Sowa M., A local truncation error estimation for a SubIval solver. Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 66 (4), pp. 475–484 (2018).
  • [10] Lacerda Ribas J., Louren¸co, E.M., Leite J., Batistela N., Modeling Ferroresonance Phenomena With a Flux-Current Jiles-Atherton Hysteresis Approach. In: IEEE Transactions on Magnetics 49 (5), 1797-1800 (2013).
  • [11] Majka Ł., Fractional derivative approach in modeling of a nonlinear coil for ferroresonance analyses. In: Non-integer order calculus and its applications, pp. 135-147, eds. P. Ostalczyk, D. Sankowski, J. Nowakowski, 9th International Conference on Non-integer Order Calculus and its Applications, Lodz, Poland, Springer International Publishing, Cham, 2019.
  • [12] Radmanesh H., Ferroresonance Elimination in 275kV Substation. Electrical and Electronic Engineering 2 (2), 54-59 (2012).
  • [13] Emin Z., Tong Y.K., Ferroresonance experience in UK: Simulations and measurements. Int. Conf. Power System Transients (IPST), Rio de Janeiro, Brazil, 24–28 (2001).
  • [14] Janssens N., Vandestockt V., Denoel H., Monfils P.A., Elimination of temporary overvoltages due to ferroresonance of voltage transformers: Design and testing of a damping system. In: Proc. CIGRE, paper 33-204, 1–8 (1990).
  • [15] Rezaei-Zare A., Iravani R., Sanaye-Pasand M., Impacts of Transformer Core Hysteresis Formation on Stability Domain of Ferroresonance Modes. In: IEEE Transactions on Power Delivery 24 (1), 177-186 (2009).
  • [16] Patel B., Das S., Roy C.K. , Roy M., Simulation of ferroresonance with hysteresis model of transformer at no-load measured in laboratory. TENCON 2008, IEEE Region 10 Conference, Hyderabad, 1-6 (2008) 48.
  • [17] Chwastek K., Baghel A.P.S., Sai Ram B., Borowik B., Daniel L., Kulkarni S.V., On some approaches to model reversible magnetization processes. Journal of Physics D: Applied Physics 51 (14), IOP Publishing Ltd, 1361-6463 (2018).
  • [18] Chakravarthy S.K., Nayar C.V., Series ferroresonance in power systems. Electrical Power and Energy Systems 17 (4), 267-274 (1995).
  • [19] Mork B.A., Stuehm D.L., Application of Nonlinear Dynamics and Chaos to Ferroresonance in Distribution Systems. IEEE Transactions on Power Delivery 9 (2), 1009-1017 (1994).
  • [20] Araujo A.E.A., Soudack A.C., Marti J.R., Ferroresonance in Power Systems: Chaotic Behaviour. IEE Proceedings-C 140 (3), 237-240 (1993).
  • [21] Kieny C., Application of the Bifurcation Theory in Studying and Understanding the Global Behavior of a Ferroresonant Electric Power Circuit. IEEE Transactions on Power Delivery 6 (2), 866-872 (1991).
  • [22] Corea-Araujo J.A., Gonz´alez-Molina F., Mart´ınez J.A., Barrado-Rodrigo J.A., Guasch-Pesquer L., Tools for Characterization and Assessment of Ferroresonance Using 3-D Bifurcation Diagrams. IEEE Transactions on Power Delivery 29 (6), 2543-2551 (2014).
  • [23] Amarab F.Ben, Dhifaouib R., Study of the periodic ferroresonance in the electrical power networks by bifurcation diagrams. Electrical Power and Energy Systems 33 (1), 61-85 (2011).
  • [24] Jordan D.W., Smith P., Nonlinear Ordinary Differential Equations. An introduction for Scientists and Engineers. FOURTH EDITION, Keele University, Oxford University Press (2007).
  • [25] Ben-Tal A., Shein D., Zissu S., Studying ferroresonance in actual power systems by bifurcation diagram. Electric Power Systems Research 49 (3), 175-183 (1999).
  • [26] Teschl G., Ordinary Differential Equations and Dynamical Systems. American Mathematical Society (Author’s preliminary version).
  • [27] Cazacu E., Ionit¸˘a V., Petrescu L., An efficient method for investigating the ferroresonance of single-phase iron core devices. 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, 363-368 (2017).
  • [28] Ben-Tal A., Kirk V., Wake G., Banded Chaos in Power Systems. In: IEEE Transactions on Power Delivery 16 (1), 105-110 (2001).
  • [29] Simon P.L., Differential Equations and Dynamical Systems. Eotvos Lorand University, Institute of Mathematics, Department of Applied Analysis and Computational Mathematics (2012).
  • [30] Mikov´a L., Gmiterko A., Hroncov´a D., State Space Representation of Dynamical Systems. American Journal of Mechanical Engineering 4 (7), Science and Education Publishing, 385-389 (2016).
  • [31] Moses P., Masoum M., Modeling subharmonic and chaotic ferroresonance with transformer core model including magnetic hysteresis effects. WSEAS Transactions on Power Systems 4, (2009).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-59a35bb5-36cc-4904-9649-bf968d1075f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.