Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Model introducing the limited conformational sub-space for early-stage intermediate definition for protein folding process presented formerly is verified in respect to the unfolding process treated as reverse process to folding. It was expected to receive the step-wise unfolded structure keeping the structural alphabet. It is shown that as long as the secondary structure is present in the gradually unfolded structures, the codes for structural alphabet are changed for relatively low number of residues. The high temperature molecular dynamics simulations revealed the structures with significantly increased distance versus the limited conformational sub-space and large change of alphabet codes. The test was performed for ubiquitine in 300K, 350K, 400K, 500K, 700K and 1000K. It suggests that the structural codes found for crystal structures can not be treated rigorously to be kept during the folding process simulation. Although some tendencies for structural codes changes are observed suggesting the corrections for the definition of early stage structural forms.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
15--23
Opis fizyczny
Bibliogr. 29 poz., tab., wykr.
Twórcy
autor
- Department of Bioinformatics and Telemedicine, Collegium Medium - Jagiellonian University, Lazarza 16, 31-530 Krakow, POLAND
- Faculty of Physics, Astronomy, Applied Computer Science - Jagiellonian University, Reymonta 4, 30-059 Krakow, POLAND
autor
- Department of Bioinformatics and Telemedicine, Collegium Medium - Jagiellonian University, Lazarza 16, 31-530 Krakow, POLAND
Bibliografia
- 1. Creighton T. E. (1977) Conformational restrictions on the pathway of folding and unfolding of the pancreatic trypsin inhibitor. J. Molec. Biol. 113, 275-293.
- 2. Creighton T. E. & Goldenberg D. P. (1984) Kinetic role of a meta-stable native-like two-disulphide species in the folding transition of bovine pancreatic trypsin inhibitor. J. Molec. Biol. 179, 497-526.
- 3. Creighton T E. (1978) Experimental studies of protein folding and unfolding. Prog. Biophys. Molec. Biol. 33, 231-297.
- 4. Creighton T. E. (1974) The single-disulphide intermediates in the refolding of reduced pancreatic trypsin inhibitor. J. Molec. Biol. 87, 603-624.
- 5. States D. J, Creighton T. E., Dobson C. M. & Karplus M. (1987) Conformations of intermediates in the folding of the pancreatic trypsin inhibitor. J. Molec. Biol. 195, 731-739.
- 6. States D. J., Dobson C. M., Karplus M. & Creighton T. E. (1984) A new two-disulphide intermediate in the refolding of reduced bovine pancreatic trypsin inhibitor. J. Molec. Biol. 174, 411-418.
- 7. Creighton T. E. (1980) Experimental elucidation of pathways of protein unfolding and refolding. In: Protein Folding (ed. Jaenicke R.) 427-446. Elsevier/North-Holland Bio-medical, Amsterdam.
- 8. Creighton T. E. (1977) Effects of urea and guanidine-HCI on the folding and unfolding of pancreatic trypsin inhibitor. J. Molec. Biol. 113, 313-328.
- 9. Creighton T. E. (1980) Role of the environment in the refolding of reduced pancreatic trypsin inhibitor. J. Molec. Biol. 144, 521-550.
- 10. Creighton T. E. (1974) The single-disulphide intermediates in the refolding of reduced pancreatic trypsin inhibitor. J. Molec. Biol. 87,603-624.
- 11. Creighton T. E., Kalef E. &Arnon R. (1978) Immunochemical analysis of the conformational properties of intermediates trapped in the folding and unfolding of bovine pancreatic trypsin inhibitor. J. Molec. Biol. 123, 129-147.
- 12. Creighton T. E. (1875) Reactivities of the cysteine residues of the reduced pancreatic trypsin inhibitor. J. Molec. Biol. 96, 777-78.
- 13. Creighton T. E. (1985) The problem of how and why proteins adopt folded conformations. J. Phys. Chem. 89, 2452-2459.
- 14. Kosen P. A., Creighton T. E. & Blout E. R. (1983) Circular dichroism spectroscopy of the intermediates that precede the rate-limiting step of the refolding pathway of bovine pancreatic trypsin inhibitor. Relationship of conformation and the refolding pathway. Biochemistry 22, 2433-2440.
- 15. Goldenberg D. P. & Creighton T. E. (1985) Energetics of protein structure and folding. Biopolymers 24, 167-182.
- 16. Creighton T. E. (1978) Refolding of bovine pancreatic trypsin inhibitor modified at methionine-52. J. Molec. Biol. 119, 507-518.
- 17. Hollecker M. & Creighton T. E. (1983) Evolutionary conservation and variation of protein folding pathways. Two protease inhibitor homologues from black mamba venom. J. Molec. Biol. 168, 409-437.
- 18. Alonso D. O., Daggett V. (1998) Molecular dynamics simulations of hydrophobic collapse of ubiquitin. Protein Sci. 7, 860-874.
- 19. Jurkowski W., Brylinski M., Konieczny L, Wiiniowski Z., Roterman I. (2004) Conformational subspace in simulation of early-stage protein folding. Proteins 55, 115-127.
- 20. http://www.rcsb.org/pdb/explore/remediatedSequence.do?structureld=1UBQ].
- 21. http://apps.phar.umich.edu/tsodikovlab/indexjiles/Page756.htm
- 22. http://www.cs.rutgers.edu/pub/seredin/DomainRewievEng.doc
- 23. Brylinski M., Konieczny L, Czerwonko P., Jurkowski W., Roterman I. (2005) Early-Stage Folding in Proteins (In Silico) Sequence-to-Structure Relation. J. Biomed. Biotechnol. 2, 65-79.
- 24. Roterman I., Konieczny L. (1995) Geometrical analysis of structural changes in immunoglobulin domains' transition from native to molten state. Comput. Chem. 19, 247-252.
- 25. Jurkowski W., Brylinski M., Konieczny L, Roterman I. (2004) Lysozyme folded in silico according to the limited conformational sub-space. J. Biomol. Struct. Dyn. 22, 149-158.
- 26. Roterman I. (1995) Modelling the optimal simulation path in the peptide chain folding-studies based on geometry of alanine heptapeptide. J. Theor. Biol. 177, 283-288.
- 27. Roterman I. (1995) The geometrical analysis of peptide backbone structure and its local deformations. Biochimie 77, 204-216.
- 28. Daggett V., Levitt M. (1993) Protein unfolding pathways explored through molecular dynamics simulations. J. Molec. Biol. 232, 600-619.
- 29. Daggett V., Levitt M. (1992) Molecular dynamics simulations of helix denaturation. J. Molec. Biol. 223, 1121-1138.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-599fe48d-112a-4793-8dcb-d2498246d4c4