PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

WAVEWATCH-III source terms evaluation for optimizing hurricane wave modeling : A case study of Hurricane Ivan

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Simulating hurricane-generated waves is a challenging task due to rapidly fluctuating wind speed and direction, simultaneous presence of swells propagating out of the previous location of the hurricane and following/opposing waves on either side of the hurricane track, and dissipation in wind speed radially from the center of the hurricane. Bulk wave parameters have been investigated using the source term packages ST3, ST4 and ST6 implemented in the WAVEWATCH-III model to determine the most appropriate formulation for simulating hurricane-generated waves in the Gulf of Mexico. Based on the comparisons between model results and in situ observations during the passage of Hurricane Ivan (2004), it is shown that ST3 is not as successful as other formulations for hurricane wave modeling. Calibrated ST6 variant, T12, has shown to be the best formulation for simulating bulk wave parameters at points within the range of hurricane wind forcing; however, for the area beyond, and also during fair weather conditions, calibrated ST4 formulation, T471-Ex4, is recommended. Although T471-EX4 and T12 packages outperformed other cases, they overestimated waves propagating in the oblique and opposing wind. Dependence of ST6 parameter a0 on wind and wave direction is examined to improve the model performance.
Czasopismo
Rocznik
Strony
194--213
Opis fizyczny
Bibliogr. 85 poz., rys., tab., wykr.
Twórcy
  • School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
  • School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
  • School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
autor
  • Department of Marine & Earth Sciences, Florida Gulf Coast University, Fort Myers, FL, USA
Bibliografia
  • [1] Allard, R., Rogers, E., Martin, P., Jensen, T., Chu, P., Campbell, T., Dykes, J., Smith, T., Choi, J., Gravois, U., 2014. The US Navy Coupled Ocean-Wave Prediction System. Oceanography 27 (3), 92-103. https://doi.org/10.5670/oceanog.2014.71.
  • [2] Alves, J.-H., Banner, M. L., Young, I., 2003. Revisiting the Pierson-Moskowitz Asymptotic Limits for Fully Developed Wind Waves. J. Phys. Oceanogr. 33 (7), 1301-1323. https://doi.org/10.1175/1520-0485(2003)033<1301:RTPALF>2.0.CO;2.
  • [3] Ardhuin, F., Chapron, B., Collard, F., 2009. Observation of swell dissipation across oceans. Geophys. Res. Lett. 36 (6), L06607. https://doi.org/10.1029/2008GL037030.
  • [4] Ardhuin, F., Jenkins, A., 2006. On the Interaction of Surface Waves and Upper Ocean Turbulence. J. Phys. Oceanogr. 36 (3), 551-557. https://doi.org/10.1175/JPO2862.1.
  • [5] Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland, A., van der Westhuysen, A., Queffeulou, P., Lefevre, J.-M., Aouf, L., Collard, F., 2010. Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. J. Phys. Oceanogr. 40 (9), 1917-1941. https://doi.org/10.1175/2010JPO4324.1.
  • [6] Babanin, A., 2006. On a wave-induced turbulence and a wave-mixed upper ocean layer. Geophys. Res. Lett. (20). https://doi.org/10.1029/2006GL027308.
  • [7] Babanin, A., 2009. Breaking of ocean surface waves. Acta. Phys. Slovaca. 59 (4), 305-535. https://doi.org/10.2478/v10155-010-0097-5.
  • [8] Babanin, A., 2011. Breaking and Dissipation of Ocean Surface Waves. Cambridge University Press.
  • [9] Babanin, A., Chalikov, D., 2012. Numerical investigation of turbulence generation in non-breaking potential waves. J. Geophys. Res. 117 (C11). https://doi.org/10.1029/2012JC007929.
  • [10] Babanin, A., Solov’yev, Y. P., 1987. Parameterization of the width of the angular distribution of wind wave energy at limited fetches. Izv. Atmos. Ocean. Physics. 23, 645-651.
  • [11] Babanin, A., Tsagareli, K., Young, I., Walker, D., 2007. Implementation of New Experimental Input/Dissipation Terms for Modelling Spectral Evolution of Wind Waves.
  • [12] Babanin, A., Tsagareli, K., Young, I., Walker, D., 2010. Numerical Investigation of Spectral Evolution of Wind Waves. Part II: Dissipation Term and Evolution Tests. J. Phys. Oceanogr. 40 (4), 667-683. https://doi.org/10.1175/2009JPO4370.1.
  • [13] Babanin, A., Westhuysen, A., 2008. Physics of “Saturation-Based” Dissipation Functions Proposed for Wave Forecast Models. J. Phys. Oceanogr. 38 (8), 1831-1841. https://doi.org/10.1175/2007JPO3874.1.
  • [14] Babanin, A., Young, I., 2005. Two-phase behaviour of the spectral dissipation of wind waves. Ocean Waves Measurement and Analysis, Madrid, Spain.
  • [15] Belcher, S. E., Hunt, J. C. R., 1993. Turbulent shear flow over slowly moving waves. J. Fluid. Mech. 251, 109-148. https://doi.org/10.1017/S0022112093003350.
  • [16] Beyramzade, M., Siadatmousavi, S. M., 2019. Skill assessment of SWAN model in the red sea using different wind data. Reg. Stud. Mar. Sc. https://doi.org/10.1016/j.rsma.2019.100714.
  • [17] Bi, F., Song, J., Wu, K., Xu, Y., 2015. Evaluation of the simulation capability of the Wavewatch III model for Pacific Ocean wave. Acta. Oceanol. Sin. 34 (9), 43-57. https://doi.org/10.1007/s13131-015-0737-1.
  • [18] Bidlot, J., Janssen, P., Abdalla, S., Hersbach, H., 2007. A revised formulation of ocean wave dissipation and its model impact ECMWF. ECMWF Technical Memoranda.
  • [19] Booij, N., Ris, R., Holthuijsen, L., 1999. A third-generation wave model for coastal regions, Part I, Model description and validation. J. Geophys. Res. 104 (C4), 7649-7656. https://doi.org/10.1029/98JC02622.
  • [20] Brenner, S., Gertman, I., Murashkovsky, A., 2007. Preoperational ocean forecasting in the southeastern Mediterranean Sea: Implementation and evaluation of the models and selection of the atmospheric forcing. J. Mar. Syst. 65 (1), 268-287. https://doi.org/10.1016/j.jmarsys.2005.11.018.
  • [21] Cavaleri, L., Sclavo, M., 2006. The calibration of wind and wave model data in the Mediterranean Sea. Coast. Eng. 53 (7), 613-627. https://doi.org/10.1016/j.coastaleng.2005.12.006.
  • [22] Chao, Y., Alves, J.-H., Tolman, H., 2005. An Operational System for Predicting Hurricane-Generated Wind Waves in the North Atlantic Ocean. Weather Forecast 20 (4), 652-671. https://doi.org/10.1175/WAF851.1.
  • [23] Cheng, Z., Mitsuyasu, H., 1992. Laboratory studies on the surface drift current induced by wind and swell. J. Fluid. Mech. 243, 247-259. https://doi.org/10.1017/S0022112092002714.
  • [24] Christakos, K., Björkqvist, J.-V., Tuomi, L., Furevik, B. R., Breivik, Ø., 2020. Modelling wave growth in narrow fetch geometries: The white-capping and wind input formulations. Ocean. Model. 157, 101730. https://doi.org/10.1016/j.ocemod.2020.101730.
  • [25] Donelan, A. M., Pierson, J. W., 1987. Radar Scattering and Equilibrium Ranges in Wind-Generated Waves With Application to Scatterometry. J. Geophys. Res. 92 (C5), 4971-5029. https://doi.org/10.1029/JC092iC05p04971.
  • [26] Donelan, M., Babanin, A., Young, I., Banner, M., 2006. Wave-Follower Field Measurements of the Wind-Input Spectral Function. Part II: Parameterization of the Wind Input. J. Phys. Oceanogr. 36 (8), 1672-1689. https://doi.org/10.1175/JPO2933.1.
  • [27] Donelan, M., Babanin, A., Young, I., Banner, M. L., McCormick, C., 2005. Wave-Follower Field Measurements of the Wind-Input Spectral Function. Part I: Measurements and Calibrations. J. Atmos. Oceanic. Tech. 22 (7), 799-813. https://doi.org/10.1175/JTECH1725.1.
  • [28] Donelan, M., Curcic, M., Chen, S., Magnusson, A., 2012. Modeling waves and wind stress. J. Geophys. Res. (C11). https://doi.org/10.1029/2011JC007787.
  • [29] Donelan, M., Drennan, W., Katsaros, K., 1997. The Air-Sea Momentum Flux in Conditions of Wind Sea and Swell. J. Phys. Oceanogr. 27 (10), 2087-2099. https://doi.org/10.1175/1520-0485(1997)027<2087:TASMFI>2.0.CO;2.
  • [30] Donelan, M. A., 1999. Wind-Induced Growth and Attenuation of Laboratory Waves. In: Sajjadi, S. G., Thomas, N. H., Hunt, J. C. R. (Eds.), Wind-over-Wave Couplings: Perspectives and Prospects. Clarendon, 183-194.
  • [31] Donelan, M. A., Haus, B., Reul, N., Plant, W., Stiassnie, M., Graber, H., Brown, O., Saltzman, E., 2004. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 31 (18). https://doi.org/10.1029/2004GL019460.
  • [32] Fan, Y., Ginis, I., Hara, T., Wright, C. W., Walsh, E. J., 2009. Numerical Simulations and Observations of Surface Wave Fields under an Extreme Tropical Cyclone. J. Phys. Oceanogr. 39 (9), 2097-2116. https://doi.org/10.1175/2009JPO4224.1.
  • [33] Hanna, S. R., Heinold, D. W., 1986. Simple Statistical Methods for Comparative Evaluation of Air Quality Models. In: De Wispelaere, C., Schiermeier, F. A., Gillani, N. V. (Eds.), Air Pollution Modeling and Its Application V. Springer US, Boston, MA, 441-452.
  • [34] Hanson, J., Tracy, B., Tolman, H., Scott, R., 2009. Pacific Hindcast Performance of Three Numerical Wave Models. J. Atmos. Oceanic. Tech. 26 (8), 1614-1633. https://doi.org/10.1175/2009JTECHO650.1.
  • [35] Hasselmann, D., Bösenberg, J., 1991. Field measurements of wave-induced pressure over wind-sea and swell. J. Fluid. Mech. 230, 391-428. https://doi.org/10.1017/S0022112091000848.
  • [36] Hasselmann, K., Bauer, E., Janssen, P., Komen, G., Bertotti, L., Lionello, P., Guillaume, A., Cardone, V., Greenwood, J., Reistad, M., Zambresky, L., Ewing, J., 1988. The WAM model — a third generation ocean wave prediction model. J. Phys. Oceanogr. 18 (12), 1775-1810. https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2.
  • [37] Hasselmann, K., Lionello, P., Hasselmann, K., 1997. An optimal interpolation scheme for the assimilation of spectral wave data. J. Geophys. Res. 1021 (C7), 15823-15836. https://doi.org/10.1029/96JC03453.
  • [38] Holthuijsen, L., Powell, M., Pietrzak, J., 2012. Wind and waves in extreme hurricanes. J. Geophys. Res. 117 (C9), 9003. https://doi.org/10.1029/2012JC007983.
  • [39] Janssen, P., 1991. Quasilinear Theory of Wind-Wave Generation Applied to Wave Forecasting. J. Phys. Oceanogr. 21, 1631-1642. https://doi.org/10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2.
  • [40] Janssen, P. A. E. M., 1982. Quasilinear approximation for the spectrum of wind-generated water waves. J. Fluid. Mech. 117, 493-506. https://doi.org/10.1017/S0022112082001736.
  • [41] Janssen, P. A. E. M., 2004. The Interaction of Ocean Waves and Wind, 1st edn. Cambridge University Press, Cambridge, UK.
  • [42] Jiang, L., Zhang, Z., Qi, Y., 2010. Simulations of SWAN and WAVEWATCH III in northern south china sea. In: Proceedings of the International Offshore and Polar Engineering Conference. Beijing, China. International Society of Offshore and Polar Engineers.
  • [43] Kalantzi, G., Gommenginger, C., Srokosz, M., 2009. Assessing the Performance of the Dissipation parameterizations in WAVEWATCH III Using Collocated Altimetry Data. J. Phys. Oceanogr. 39 (11), 2800-2819. https://doi.org/10.1175/2009JPO4182.1.
  • [44] Kazeminezhad, M. H., Siadatmousavi, S. M., 2017. Performance evaluation of WAVEWATCH III model in the Persian Gulf using different wind resources. Ocean. Dyn. 67 (7), 839-855. https://doi.org/10.1007/s10236-017-1063-2.
  • [45] Komen, G., Hasselmann, K., 1984. On the Existence of a Fully Developed Wind-Sea Spectrum. J. Phys. Oceanogr. 14, 1271-1285. https://doi.org/10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2.
  • [46] Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., Janssen, P. A. E. M., 1996. Dynamics and Modelling of Ocean Waves. Cambridge University Press.
  • [47] Lakshmi H Kantha, C. A. C., 2000. Numerical models of oceans and oceanic processes. J. Fluid. Mech. 432, 442-442. https://doi.org/10.1017/S0022112001003822.
  • [48] Liu, Q., Babanin, A., Fan, Y., Zieger, S., Guan, C., Moon, I.-J., 2017. Numerical simulations of ocean surface waves under hurricane conditions: Assessment of existing model performance. Ocean. Model. 118, 73-93. https://doi.org/10.1016/j.ocemod.2017.08.005.
  • [49] Liu, Q., Rogers, W., Babanin, A., Young, I., Romero, L., Zieger, S., Qiao, F., Guan, C., 2018. Observation-based source terms in the third-generation wave model WAVEWATCH III: Updates and verification. J. Phys. Oceanogr. 49 (2), 489-517. https://doi.org/10.1175/JPO-D-18-0137.1.
  • [50] Mazaheri, S., Kamranzad, B., Hajivalie, F., 2013. Modification of 32 years ECMWF wind field using QuikSCAT data for wave hindcasting in Iranian Seas. J. Coast. Res. 65 (SP1), 344-349. https://doi.org/10.2112/SI65-059.1.
  • [51] Meissner, T., Smith, D., Fj, W., 2001. A 10-year intercomparison between collocated Special Sensor Microwave Imager oceanic surface wind speed retrievals and global analyses. J. Geophys. Res. 106 (C6), 11731-11742. https://doi.org/10.1029/1999JC000098.
  • [52] Mentaschi, L., Besio, G., Cassola, F., Mazzino, A., 2015. Performance evaluation of Wavewatch III in the Mediterranean Sea. Model, Ocean. https://doi.org/10.1016/j.ocemod.2015.04.003.
  • [53] Miles, J. W., 1957. On the generation of surface waves by shear flows. J. Fluid. Mech. 3 (2), 185-204. https://doi.org/10.1017/S0022112057000567.
  • [54] Mitsuyasu, H., Honda, T., 1982. Wind-induced growth of water waves. J. Fluid Mech. 123, 425-442. https://doi.org/10.1017/S002211208200313.
  • [55] Mitsuyasu, H., Maeda, Y., 2002. On the Contribution of Swell to Sea Surface Phenomena-Part 2. Int. J. Offshore Polar Eng. 12, 1053-5381.
  • [56] Mitsuyasu, H., Yoshida, Y., 2005. Air-Sea Interactions under the Existence of Opposing Swell. J. Oceanogr. 61 (1), 141-154. https://doi.org/10.1007/s10872-005-0027-1.
  • [57] Mizuno, S., 2003. Laboratory experiments on the effects o mechanical waves on the mean and turbulent flow under the wind waves. In: Proceedings of 2003 Meeting of Japan Society of Fluid Mechanics, 41-42.
  • [58] Moeini, M., Etemad-Shahidi, A., Chegini, V., Rahmani, I., 2012. Wave data assimilation using a hybrid approach in the Persian Gulf. Ocean. Dyn. 62 (5), 785-797. https://doi.org/10.1007/s10236-012-0529-5.
  • [59] Moon, I. J., Ginis, I., Hara, T., Tolman, H. L., Wright, C. W., Walsh, E. J., 2003. Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. J. Phys. Oceanogr. 33.
  • [60] Ortíz, J., Mercado, A., 2008. An intercomparison of swan and wavewatch III models with data from NDBC-NOAA buoys at oceanic scales. Coast. Eng. J. 50 (1), 47-73. https://doi.org/10.1142/S0578563408001739.
  • [61] Padilla-Hernandez, R., Perrie, W., Toulany, B., Smith, P., 2004. Intercomparison of Third Generation Wave Models in Shallow Water. AGU Spring Meeting Abstracts.
  • [62] Peirson, W., Garcia, A., Pells, S., 2003. Water wave attenuation due to opposing wind. J. Fluid Mech. 487, 345-365. https://doi.org/10.1017/S0022112003004750.
  • [63] Phadke, A., Martino, C., Cheung, K. F., Houston, S., 2003. Modeling of tropical cyclone winds and waves for emergency management. Ocean Eng. 30 (4), 553-578. https://doi.org/10.1016/S0029-8018(02)00033-1.
  • [64] Pierson, W. J., Moskowitz, L., 1964. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res. 69 (24), 5181-5190. https://doi.org/10.1029/JZ069i024p05181.
  • [65] Powell, M., Vickery, P., Reinhold, T., 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422 (6929), 279-283. https://doi.org/10.1038/nature01481.
  • [66] Rascle, N., Ardhuin, F., 2013. A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean. Model. 70, 174-188. https://doi.org/10.1016/j.ocemod.2012.12.001.
  • [67] Rogers, E., Babanin, A., Wang, D., 2012. Observation-Consistent Input and Whitecapping Dissipation in a Model for Wind-Generated Surface Waves: Description and Simple Calculations. J. Atmos. Oceanic Tech. 29 (9), 1329-1346. https://doi.org/10.1175/JTECH-D-11-00092.1.
  • [68] Rogers, W., Dykes, J., Wittmann, P., 2014. US Navy Global and Regional Wave Modeling. Oceanography 27 (3), 56-67. https://doi.org/10.5670/oceanog.2014.68.
  • [69] Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., 2010. The NCEP climate forecast system reanalysis. B. Am. Meteorol. Soc. 91 (8), 1015-1058. https://doi.org/10.1175/2010BAMS3001.1.
  • [70] Siadatmousavi, S. M., Jose, F., Miot da Silva, G., 2015. Sensitivity of a third-generation wave model to wind and boundary condition sources and model physics: A case study from the South Atlantic Ocean off Brazil coast. Comput. Geosci-UK 90 (Part B), 57-65. https://doi.org/10.1016/j.cageo.2015.09.025.
  • [71] Siadatmousavi, S. M., Jose, F., Stone, G. W., 2011. Evaluation of two WAM white capping parameterizations using parallel unstructured SWAN with application to the Northern Gulf of Mexico. USA. Appl. Ocean. Res. 33 (1), 23-30. https://doi.org/10.1016/j.apor.2010.12.002.
  • [72] Signell, R., Carniel, S., Cavaleri, L., Chiggiato, J., Doyle, J., Pullen, J., Sclavo, M., 2005. Assessment of wind quality for oceanographic modelling in semi-enclosed basins. J. Mar. Syst. 53 (1), 217-233. https://doi.org/10.1016/j.jmarsys.2004.03.006.
  • [73] Snyder, R. L., Dobson, F. W., Elliott, J. A., Long, R. B., 1981. Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech. 102, 1-59. https://doi.org/10.1017/S0022112081002528.
  • [74] Taylor, K. E., 2001. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res.-Atmos. 106 (D7), 7183-7192.
  • [75] Teixeira, M. A. C., Belcher, S. E., 2002. On the distortion of turbulence by a progressive surface wave. J. Fluid Mech. 458, 229-267. https://doi.org/10.1017/S0022112002007838.
  • [76] Thomson, J., D’Asaro, E., Cronin, M., Rogers, W., Harcourt, R., Shcherbina, A., 2013. Waves and the equilibrium range at Ocean Weather Station P. J. Geophys. Res. 118 (11), 5951-5962. https://doi.org/10.1002/2013JC008837.
  • [77] Tolman, H., Abdolali, A., Mickael, A., Alves, J.-H., Ardhuin, F., Babanin, A., Barbariol, F., Benetazzo, A., Bidlot, J., Booij, N., Boutin, G., Bunney, C., Campbell, T., Chalikov, D., Chawla, A., Cheng, S., Collins, C., Filipot, J.-F., Flampouris, S., Liang, Z., 2019. User manual and system documentation of WAVEWATCH III (R) version 6.07. NOAA / NWS / NCEP / MMAB Technical Note 333.
  • [78] Tolman, H., Chalikov, D., 1996. Source Terms in a Third-Generation Wind Wave Model. J. Phys. Oceanogr. 26 (11), 2497-2518. https://doi.org/10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2.
  • [79] Umesh, P., Behera, M. R., 2020. Performance evaluation of input-dissipation parameterizations in WAVEWATCH III and comparison of wave hindcast with nested WAVEWATCH III-SWAN in the Indian Seas. Ocean Eng. 202, 106959. https://doi.org/10.1016/j.oceaneng.2020.106959.
  • [80] Young, I., 1999. Wind Generated Ocean Waves. In: Young, I. R. (Ed.), Elsevier Ocean Engineering Series. Elsevier, 1-288.
  • [81] Young, I., Babanin, A., 2006. Spectral Distribution of Energy Dissipation of Wind-Generated Waves due to Dominant Wave Breaking. J. Phys. Oceanogr. 36 (3), 376-394. https://doi.org/10.1175/JPO2859.1.
  • [82] Young, I. R., Sobey, R. J., 1985. Measurements of the wind-wave energy flux in an opposing wind. J. Fluid Mech. 151, 427-442. https://doi.org/10.1017/S0022112085001033.
  • [83] Zhao, W., Guan, S., Hong, X., Li, P., Tian, J., 2011. Examination of wind-wave interaction source term in WAVEWATCH III with tropical cyclone wind forcing. Acta. Oceanol. Sin. 30 (4), 1-13. https://doi.org/10.1007/s13131-011-0128-1.
  • [84] Zieger, S., Babanin, A., Rogers, W., Young, I., 2011. Observation-based dissipation and input terms for WAVEWATCH III TM: implementation and simple simulations. 12th International Workshop on Wave Hindcasting and Forecasting.
  • [85] Zieger, S., Babanin, A., Rogers, W., Young, I., 2015. Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Model. 96 (Pt. 1), 2-25. https://doi.org/10.1016/j.ocemod.2015.07.014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-599c8641-d9b2-4a31-9939-f5517b5bf845
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.