PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extraction of rubidium ion from brine solutions by dicyclohexano-18-crown-6 / ionic liquid system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Separation among rubidium and potassium ions from salt lake brines remains challenging. In this work, a typical room temperature ionic liquid 1-ethyl-3-metyhlimidazaolium bis(trifluoromethylsulfonyl)imide ([C2mim+][NTf2-]) was used as diluent and synergistic extractant, dicyclohexano-18-crown-6 (DCH18C6) was used as extractant to extract rubidium ions from brine solutions which contain high concentrations of potassium ions was investigated. Under the optimal conditions, the single extraction efficiency of rubidium ions was up 93.63%. The thermodynamic parameters of the rubidium ion extraction were obtained. Based on the slope analysis method, the extracted species in the organic phase were ascertained as 1:1 complex. UV-visible has been performed to investigate the ion concentration of ionic liquid before and after the interaction of metal ions and ligands. Rubidium ions in [Rb · DCH18C6]+ complex were stripped by 2.5 mol · L-1 NH4NO3. The extraction system offers high efficiency, simplicity and environmentally friendly application prospect to separate rubidium from brine solutions.
Rocznik
Strony
61--68
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wz.
Twórcy
  • Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
  • School of water resources and environmental engineering, East China University of Technology, 330013, China
autor
  • School of Biology, Chemistry and Material Science, East China University of Technology, 330013, China
autor
  • School of water resources and environmental engineering, East China University of Technology, 330013, China
autor
  • School of Biology, Chemistry and Material Science, East China University of Technology, 330013, China
Bibliografia
  • 1. Lv, Y., Xing, P., Ma, B., Liu, Y., Wang, C., Zhang, W., & Chen, Y. (2020). Efficient extraction of lithium and rubidium from polylithionite via alkaline leaching combined with solvent extraction and precipitation. ACS Sustainable Chem. 8(38). 14462–14470. DOI: 10.1021/acssuschemeng.0c04437.
  • 2. Tang, H., Zhao, L., Sun, W., Hu, Y., Ji, X., Han, H., & Guan, Q. (2018). Extraction of rubidium from respirable sintering dust. Hydrometallurgy, 175, 144–149. DOI: 10.1016/j. hydromet.2017.11.003.
  • 3. Xing, P., Wang, C., Chen, Y., & Ma, B. (2021). Rubidium extraction from mineral and brine resources: A review. Hydrometallurgy, 203, 105644. DOI: 10.1016/j.hydromet.2021.105644.
  • 4. Lian, L., Zhang, S., Ma, N., & Dai, W. (2021). Well-designed a novel phosphomolybdic-acid@ PCN-224 composite with efficient simultaneously capture towards rubidium and cesium ions. Polyhedron, 207, 115402. DOI: 10.1016/j. poly.2021.115402.
  • 5. Xu, J., Pu, Z., Xu, X., Wang, Y., Yang, D., Zhang, T., & Qiu, F. (2019). Simultaneous adsorption of Li (I) and Rb (I) by dual crown ethers modified magnetic ion imprinting polymers. Appl. Organomet. Chem. 33(3), e4778. DOI: 10.1002/aoc.4778.
  • 6. Gao, L., Ma, G., Zheng, Y., Tang, Y., Xie, G., Yu, J., & Duan, J. (2020). Research trends on separation and extraction of rare alkali metal from salt lake brine: rubidium and cesium. Solvent Extr. Ion Exc. 38(7), 753–776. DOI: 10.1080/07366299.2020.1802820.
  • 7. Xing, P., Wang, G., Wang, C., Ma, B., & Chen, Y. (2018). Separation of rubidium from potassium in rubidium ore liquor by solvent extraction with t-BAMBP. Miner. Eng. 121, 158–163. DOI: 10.1016/j.mineng.2018.03.014.
  • 8. Bao, A., Zheng, H., Liu, Z., & Huang, D. (2017). Adsorption Behaviors of Rubidium and Cesium Ions from Aqueous Solution onto Sodium Tetraphenylborate-Polyacrylonitrile (TPB-PAN). Chemistry Select, 2(35), 11806–11814. DOI: 10.1002/slct.201702320.
  • 9. Chen, W. S., Lee, C. H., Chung, Y. F., Tien, K. W., Chen, Y. J., & Chen, Y. A. (2020). Recovery of rubidium and cesium resources from brine of desalination through t-BAMBP extraction. Metals, 10(5), 607. DOI: 10.3390/met10050607.
  • 10. Luo, Y., Chen, Q., & Shen, X. (2019). Complexation and extraction investigation of rubidium ion by calixcrown-C2mimNTf2 system. Sep. Purif. Technol. 227, 115704. DOI: 10.1016/j.seppur.2019.115704.
  • 11. Liu, S. M., Liu, H. H., Huang, Y. J., & Yang, W. J. (2015). Solvent extraction of rubidium and cesium from salt lake brine with t-BAMBP–kerosene solution. T. Nonferr. Metal. Soc. 25(1), 329–334. DOI: 10.1016/S1003-6326(15)63608-1.
  • 12. Li, Z., Pranolo, Y., Zhu, Z., & Cheng, C.Y. (2017). Solvent extraction of cesium and rubidium from brine solutions using 4-tert-butyl-2-(α-methylbenzyl)-phenol. Hydrometallurgy, 171, 1–7. DOI: 10.1016/j.hydromet.2017.03.007.
  • 13. Grüner, B., Plešek, J., Báča, J., Dozol, J.F., Lamare, V., Císařová, I., & Čáslavský, J. (2002). Crown ether substituted cobalta bis (dicarbollide) ions as selective extraction agents for removal of Cs+ and Sr2+ from nuclear waste. New J. Chem. 26(7), 867–875. DOI: 10.1039/B109956F.
  • 14. Hallett, J.P., & Welton, T. (2011). Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev. 111(5), 3508–3576. DOI: 10.1021/cr1003248.21469639.
  • 15. Vasudeva Rao, P. R., Venkatesan, K. A., Rout, A., Srinivasan, T. G., & Nagarajan, K. (2012). Potential applications of room temperature ionic liquids for fission products and actinide separation. Sep. Sci. Technol. 47(2), 204–222. DOI: 10.1080/01496395.2011.628733.
  • 16. Xiao, J., Jia, Y., Shi, C., Wang, X., Yao, Y., & Jing, Y. (2016). Liquid-liquid extraction separation of lithium isotopes by using room-temperature ionic liquids-chloroform mixed solvent system contained benzo-15-crown-5. J. Mol. Liq. 223, 1032–1038. DOI: 10.1016/j.molliq.2016.08.078.
  • 17. Kubiczek, A., & Kamiński, W. (2017). Liquid-Liquid Extraction in Systems Containing Butanol and Ionic Liquids-A Review. Chem. Process Eng-inz. 38(1). DOI: 10.1515/cpe-2017-0008.
  • 18. Shi, C., Jing, Y., & Jia, Y. (2016). Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid. J. Mol. Liq. 215, 640–646. DOI: 10.1016/j. molliq.2016.01.025.
  • 19. Chen, Y., Wang, H., Pei, Y., & Wang, J. (2018). A green separation strategy for neodymium (III) from cobalt (II) and nickel (II) using an ionic liquid-based aqueous two-phase system. Talanta, 182, 450–455. DOI: 10.1016/j.talanta.2018.02.018.29501177.
  • 20. Vendilo, A. G., Djigailo, D. I., Rönkkömäki, H., Lajunen, M., Chernikova, E. A., Lajunen, L. H., ... & Popov, K. I. (2010). A correlation of caesium-18-crown-6 complex formation constants with the extraction capability for hydrophobic ionic liquids. Mendeleev Commun. 2(20), 122–124. DOI: 10.1016/j. mencom.2010.03.020.
  • 21. Sengupta, A., & Mohapatra, P. K. (2012). Extraction of radiostrontium from nuclear waste solution using crown ethers in room temperature ionic liquids. Supramol. Chem. 24(11), 771–778. DOI: 10.1080/10610278.2012.716840.
  • 22. Garvey, S. L., & Dietz, M. L. (2014). Ionic liquid anion effects in the extraction of metal ions by macrocyclic polyethers. Sep. Purif. Technol. 123, 145–152. DOI: 10.1016/j. seppur.2013.12.005.
  • 23. Luo, H., Dai, S., Bonnesen, P. V., Buchanan, A. C., Holbrey, J. D., Bridges, N. J., & Rogers, R. D. (2004). Extraction of cesium ions from aqueous solutions using calix [4] arene-bis (tert-octylbenzo-crown-6) in ionic liquids. Anal. Chem. 76(11), 3078–3083. DOI: 10.1021/ac049949k.15167785.
  • 24. Horwitz, E. P., Dietz, M. L., & Fisher, D. E. (1990). Extraction of stoontium from nitric acid solutions using dicyclohexano-18-crown-5 and its derivatives. Solvent Extr. Ion Exc. 8(4–5), 557–72. DOI: 10.1080/07366299008918017.
  • 25. Dai, S., Ju, Y. H., & Barnes, C. E. (1999). Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids. J. Chem. Soc. Dalton Trans. (8), 1201–1202. DOI: 10.1039/A809672D.
  • 26. Ertan, B., & Erdoğan, Y. (2016). Separation of rubidium from boron containing clay wastes using solvent extraction. Powder Technol. 295, 254–260. DOI: 10.1016/j.powtec.2016.03.043.
  • 27. Yang, H., Ma, B., Lv, Y., Wang, C., & Chen, Y. (2022). Novel Technology for Synergistic Extraction of Li and Rb from a Complex Lithium Concentrate. ACS Sustain. Chem. Eng. 10(36), 12030–12040. DOI: 10.1021/acssuschemeng.2c03957.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5999435a-85e7-4d73-854f-00f9ff719169
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.